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University of Washington 

Abstract 

Experimental Studies of Sputtering on Zirconium Analyzed using 

Modified Roosandaal Sanders Theory 

By Paul Robert Schomber 

Chairperson of The Supervisory Committee: Professor Robert O. Watts 

Department of Chemistry 

An ion optics system utilizing a wein filter velocity selector has been 

modeled and characterized for use as an ion source for an instrument to 

measure high resolution angular distributions of sputtered neutral atoms. 

Laser induced fluorescence detection techniques are used to measure ground 

state and first excited state sputtering angular distributions on a 

polycrystalline zirconium foil using argon and nitrogen sputter gases. The 

incident ion beam impact angle has been varied from 15 ° to 75° as measured 

from surface normal and the wein filter velocity selector has been used to 

select N2
+ and N+ ion beams from the nitrogen ion beam. 

The experimental data gathered are compared to Roosandaal Sanders 

analytical sputtering theory along with data on xenon and neon. Roosandaal 

Sanders theory reproduces the near surface normal sputtering behavior but 

rapidly breaks down as the incident ion beam impact angle moves toward the 

surface. Modifications to the Roosandaal Sanders equation to introduce 



adjustable fitting parameters and non-linear least squares fitting of the 

experimental data to these parameters has been accomplished. The results 

are discussed relating the fitting parameters to physical constants based in 

Roosandaal Sanders Theory. Discrepancies in the theory are addressed with 

extensive discussion on ion surface interaction. 

Accesion for 

NTIS    CRA&I 
DTtC    TAB 
Unannounced 
Justification 

By  
Distribution/ 

i- 
a 
a 

Availability Codes 

Dist 

f\l 

Avail and/or 
Special 



TABLE OF CONTENTS 

List of Figures Hi 

List of Tables vii 

CHAPTER 1. INTRODUCTION AND THEORETICAL MODELS OF SPUTTERING 1 

History and Early Theory 2 

Three Regimes of Sputtering 5 

Collisional Theory 7 

Thomas-Fermi Potential 10 

Analytical Approximations to the Thomas-Fermi Potential 14 

Kinetic Energy Transfer to Target 16 

Energy Loss Cross Section 18 

Thompson's Theory of Sputtering 19 

Roosandaal Sanders Theory 25 

CHAPTER 2. EXPERIMENTAL CHARACTERIZATION AND PROCEDURES 30 

Ion Systems -Hardware Specifications 30 

Simion Simulations 35 

Extraction conditions 36 

Wein Filter parameters 38 

Ion Beam Focusing 42 

LIF System - Hardware specifications 44 

Detection Efficiency - Zr spectroscopy 50 

Fraction of atoms excited by laser 53 

Fraction of atoms that fluoresce in detection volume 53 

Fraction of atoms detected by photomultiplier 56 

UHV Sample Chamber and Surface Characterization 57 

Control Computers and Programs - Hardware 59 

Programs -MasterMenu 59 

Auger program 60 



Mass spectrometer program 62 

Frequency Scan Program 62 

Angular Scan program 63 

DAC Test Program 64 

BASIC Program 64 

Procedures 65 

CHAPTER 3. RESULTS AND DISCUSSION 68 

Laser Power Saturation Determination 68 

Ar* Ground State Sputtering 70 

Normalized Shape vs incident ion angle 72 

Roosandaal Sanders fit to raw data 73 

Roosandaal Sanders Discrepancies - Peak Position 80 

Roosandaal Sanders variation of U and incident ion angle 81 

Roosandaal Sanders fits to forward sputtering 83 

Roosandaal Sanders fitting to backward sputtering 89 

Variation in nand U allowed by fitting routine 91 

CHAPTER 4. NITROGEN SPUTTERING ON ZIRCONIUM 95 

Nitrogen absorbates on Zirconium 95 

N2
+ ground state sputtering on Zirconium 96 

N+ sputtering on Zirconium 110 

CHAPTER 5. SUMMARY AND CONCLUSIONS 116 

Future Work 222 

LIST OF REFERENCES 124 

APPENDIX A - COMPUTER PROGRAMS 130 

li 



List of Figures 

FIGURE 1. THE THREE SPUTTERING REGIMES: (A) THE SINGLE KNOCK-ON REGIME; 

(B) THE LINEAR CASCADE REGIME; (C) THE SPIKE REGIME 6 

FIGURE 2. SCATTERING OF PARTICLES BY A CENTRAL POTENTIAL 8 

FIGURE 3. THE THOMAS FERMI SCREENING FUNCTION, O(X), AND THE POWER LAW 

APPROXIMATIONS. X=R/A WHERE A IS THE SCREENING RADIUS. EACH 

STRAIGHT LINE IS A POWER APPROXIMATION TO O(X) AND IS VALID ONLY FOR A 

SHORT DISTANCE 13 

FIGURE 4. ION OPTICS SYSTEM 31 

FIGURE 5. COLUTRON ION SOURCE 31 

FIGURE 6. WEIN FILTER FIELD vs. COIL CURRENT 33 

FIGURE 7. WEIN FILTER SCAN OF MIXED N2
+ AND N+ ION BEAM 34 

FIGURE 8. ION EXTRACTION REGION 37 

FIGURE 9. EXTENDING EXTRACTION OPTIC 37 

FIGURE 10. FIRST STAGE OF ION OPTICS 39 

FIGURE 11. SECOND STAGE OF ION OPTICS 39 

FIGURE 12. N2
+ WITHOUT MAGNETIC FIELD AND 100 VOLT E FIELD 40 

FIGURE 13. N2
+ WITH 210 GAUSS MAGNETIC HELD AND 100 VOLT E FIELD 41 

FIGURE 14. N+ WITH 210 GAUSS MAGNETIC HELD AND 100 VOLT E FIELD 41 

FIGURE 15. SMALL APERTURE SPREADING OF ION BEAM 43 

FIGURE 16. CORRECT APERTURE AND FOCUSING ON SAMPLE 44 

FIGURE 17. UHV CHAMBER AND LASER SYSTEMS 46 

FIGURE 18. LIF DETECTOR..... 47 

FIGURE 19. SIGNAL vs. DISCRIMINATOR LEVEL 49 

FIGURE 20. DISCRIMINATOR DIFFERENTIAL CURVE 49 

FIGURE 21. ENERGY LEVEL DIAGRAM OF ZIRCONIUM 51 

in 



FIGURE 22. FRACTION OF 
5
FX° ATOMS THAT WILL RADIATIVELY DECAY BEFORE 

LEAVING THE DETECTION VOLUME 54 

FIGURE 23. AUGER SCAN OF A DIRTY SURFACE 58 

FIGURE 24. AUGER SCAN OF CLEAN SURFACE 59 

FIGURE 25. AR
+
 GROUND STATE FREQUENCY CURVES 69 

FIGURE 26. POWER SATURATION CURVE 70 

FIGURE 27. AR
+
 SPUTTERING ON ZR (RAW DATA) 71 

FIGURE 28. NORMALIZED AR
+
 SPUTTERING CURVES 73 

FIGURE 29. ROOSANDAAL SANDERS FIT, 1.9 KEV AR
+
 AT 15° ANGLE OF INCIDENCE.75 

FIGURE 30. ROOSANDAAL SANDERS FIT, 1.9 KEV AR
+
 AT 30° ANGLE OF INCIDENCE.76 

FIGURE 31. ROOSANDAAL SANDERS FIT, 1.9 KEV AR
+
 AT 45° ANGLE OF INCIDENCE.76 

FIGURE 32. ROOSANDAAL SANDERS FIT, 1.9 KEV AR
+
 AT 60° ANGLE OF INCIDENCE.77 

FIGURE 33. ROOSANDAAL SANDERS FIT 1.9 KEV AR
+
 AT 65° ANGLE OF INCIDENCE.77 

FIGURE 34. ROOSANDAAL SANDERS FIT 1.9 KEV AR
+
 AT 70° ANGLE OF INCIDENCE.78 

FIGURE 35. ROOSANDAAL SANDERS FIT 1.9 KEV AR
+
 AT 75° ANGLE OF INCIDENCE.78 

FIGURE 36. ROOSANDAAL SANDERS FITS, 15 - 75° COMPILATION 79 

FIGURE 37. ROOSANDAAL SANDERS CURVES, VARYING U 81 

FIGURE 38. ROOSANDAAL SANDERS CURVES, VARYING INCIDENT ION ANGLE 82 

FIGURE 39. MODIFIED RS FIT, AR
+
 AT 30° ANGLE OF INCIDENCE 84 

FIGURE 40. MODIFIED RS FIT, AR
+
AT45° ANGLE OF INCIDENCE 85 

FIGURE 41. MODIFIED RS FIT, AR
+
 AT 60° ANGLE OF INCIDENCE 85 

FIGURE 42. MODIFIED RS FIT, AR
+
 AT 65° ANGLE OF INCIDENCE 86 

FIGURE 43. MODIFIED RS FIT, AR
+
 AT 70° ANGLE OF INCIDENCE 86 

IV 



m                        FIGURE 44. MODIFIED RS FIT, AR
+
 AT 75° ANGLE OF INCIDENCE   87 

FIGURE 45. MODIFIED RS COMPILATION, 15 - 75°   87 

|                        FIGURE 46. CHI vs. N FOR 70° AR
+
ON ZR   91 

FIGURE 47. N2
+ SPUTTERING ON ZIRCONIUM AT 60° INCIDENCE   96 

I                        FIGURE 48. N2
+ GROUND STATE SPUTTERING ON ZR (RAW DATA)   97 

H                        FIGURE 49. NORMALIZED N2
+ SPUTTERING CURVES   98 

■                        FIGURE 50. N2
+ SPUTTERING ON ZR AT 30° INCIDENT   99 

■                       FIGURE 51. N2
+ SPUTTERING ON ZR AT 45° INCIDENT   100 

■                        FIGURE 52. N2
+
SPUTTERING ON ZR AT 60° INCIDENT   100 

I                         FIGURE 53. N2
+SPUTTERING ON ZR AT 75° INCIDENT   101 

FIGURE 54. N2
+ SPUTTERING ON ZR (RAW DATA)   103 

|                        FIGURE 55. N2
+ SPUTTERING ON ZR (NORMALIZED DATA)   103 

FIGURE 56. N2
+ IX SPUTTERING ON ZR   105 

I                        FIGURE 57. N2
+ IX NORMALIZED YIELD   106 

■                        FIGURE 58. N2
+ IX MODIFIED RS FIT AT 30° INCIDENCE   107 

FIGURE 59. N2
+ IX MODIFIED RS FIT AT 45° INCIDENCE   107 

™                        FIGURE 60. N2
+ IX MODIFIED RS FIT AT 60° INCIDENCE   108 

I                        FIGURE 61. N2
+ IX MODIFIED RS FIT AT 75° INCIDENCE   108 

FIGURE 62. N+ GROUND STATE SPUTTERING OF ZR (RAW DATA)   110 

1                        FIGURE 63. N+NORMALIZED YIELD   Ill 

m                       FIGURE 64. MODIFIED RS FIT TO N+ ON ZR AT 30° INCIDENCE   112 

FIGURE 65. MODIFIED RS FIT TO N+ ON ZR AT 45° INCIDENCE   112 

■                        FIGURE 66. MODIFIED RS FIT TO N+ ON ZR AT 60° INCIDENCE  

V 

 113 



FIGURE 67. MODIFIED RS FIT TO N+ ON ZR AT 75° INCIDENCE 113 

FIGURE 68. U vs ION BEAM ANGLE OF INCIDENCE, FORWARD SPUTTERING CASE.. 118 

FIGURE 69. N vs ION BEAM ANGLE OF INCIDENCE, FORWARD SPUTTERING CASE. .119 

FIGURE 70. U VERSUS ION BEAM INCIDENCE ANGLE, BACKWARD SPUTTERING CASE.120 

FIGURE 71. N VS ION BEAM INCIDENCE ANGLE, BACKWARD SPUTTERING CASE 121 

VI 



List of Tables 

TABLE 1. VALUES OF A,M USED IN EQUATION 27 17 

TABLE 2. VALUES OF TM 21 

TABLE 3 : WEIN FILTER MAGNET AND E FIELD PARAMETERS 42 

TABLE 4. MAJOR DECAY PATHWAYS OF TWO UPPER STATES OF ZR (USED IN THESIS).52 

TABLE 5. FITTING PARAMETERS USING ROOSANDAAL-SANDERS EQUATION 74 

TABLE 6. PEAK POSITION OF ZR SPUTTERED BY AR
+ 80 

TABLE 7. PEAK POSITION VERSUS U AND INCIDENT ION ANGLE 82 

TABLE 8. ROOSANDAAL SANDERS FITS TO BACK AND FORWARD SPUTTERING 84 

TABLE 9. MODIFIED RS FIT TO NE
+
 AND XE

+ 93 

TABLE 10. PLATEAU WIDTH AND PEAK POSITION FOR N2
+ ON ZR 98 

TABLE 11. ROOSANDAAL SANDERS BEST HT PARAMETERS FOR N2
+ 101 

TABLE 12. ROOSANDAAL SANDERS FITS TO CURVES IN FIGURE 54 104 

TABLE 13. PEAK WIDTH AND POSITION FOR N2
+ lx ON ZR 106 

TABLE 14. MODIFIED RS BEST HT PARAMETERS FOR N2
+ lx 109 

TABLE 15. PEAK POSITIONS OF N+ Ill 

TABLE 16. MODIFIED RS BEST FIT PARAMETERS TO N+ 114 

Vll 



ACKNOWLEDGMENTS 

The Author wishes to express sincere thanks to Professor Robert Watts 

for his tutelage during his tenure at the University of Washington. His 

patience and sense of humor have made the six years at the university 

enjoyable as well as educational. Special thanks must go to Dr. Pat Jones and 

Dr. Wolfram Marring for invaluable discussions and assistance on the theory 

of sputtering and the operation of the sputtering apparatus. 

Everyone in the Watts group is thanked for their friendship and the 

numerous scientific and social discussions over the past years. The talks over 

pizza or Kidd Valley burgers in the lab during late night runs will never be 

forgotten. 

Finally, the Author wishes to thank the Air Force for the opportunity 

to pursue this degree; his parents for their support and encouragement over 

the years; and most especially his wife, for putting up with him during the 

writing of the thesis, proofing the various drafts, and having faith on the days 

that he didn't. 

vni 



To my parents and my wife, Beth who always had faith in me 

IX 



Chapter 1. Introduction and Theoretical Models of Sputtering 

Sputtering is described as the "removal of surface atoms due to 
i 

energetic particle bombardment."   Sputter erosion is not the only observable 

effect of particle bombardment nor can all erosion caused by particle 
2 

bombardment be classified as sputtering. Sigmund states four criteria for an 

event to be classified as sputtering: 

1. Sputtering is a class of erosion phenomena observed on a material surface 

as a consequence of (external or internal) particle bombardment; 

2. Sputtering is observable in the limit of small incident-particle current; 

3. Sputtering is observable in the limit of small incident-particle fluence; 

4. Sputtering is observable on target materials of homogeneous composition. 

The first criterion defines the type of events that could be classified as 

sputtering. The second criterion distinguishes sputtering from macroscopic 

heating and subsequent evaporation of target atoms by high intensity ion 

beams. The third criterion allows a sputtering event to be caused by a single 

particle as opposed to blistering, which requires a threshold fluence to be 

observed. The last criterion distinguishes sputtering from collision-induced 

desorption. These criteria are generally accepted as the conditions which 

determine if a sputtering event occurs. 

The great majority of sputtering experiments to date have used noble 

gas ion beams as projectile sources. There are only a handful of papers that 

report the use of diatomic sputter gases, and these measure the total sputter 

yield as opposed to angular distributions. '   Previous workers '   in this 

laboratory have used laser-induced fluorescence to detect the angular 

distributions of zirconium atoms sputtered using argon, neon, and xenon 
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gases. Zirconium was chosen as the target because its fluorescence spectrum 

is well-characterized and easily reached using a standard dye laser. We wish 

to expand this work to diatomic gas species and negative halide ion sources 

in order to compare the excited state angular distributions with the ground 

state distributions. The analytical theories of sputtering are built around the 

theory of elastic collisions, yet there are a significant fraction of atoms 

sputtered in excited states, providing evidence of inelasticity. If the electron 

on a negatively charged ion is stripped away from the incoming ion upon 

hitting the target surface, the energy of this electron will be localized in the 

surface layers and the excited state yield detected should be greater than that 

observed from a positively charged ion. 

History and Early Theory 

C 

Sputtering was first observed experimentally by Grove in 1853 as the 

build up of a metallic deposit on the glass walls of a discharge tube. The 

mechanism for this deposit was first postulated as the heating and 

subsequent evaporation of the cathode in the discharge. This was disproved 

experimentally with the observation that the sputtering rate did not depend 

on the temperature as long as the cathode was well below its melting point. 

9 
Fifty years later, Goldstein proved conclusively that the deposit was caused 

by positive ions in the discharge hitting the cathode. Since that date, several 

theoretical and experimental investigations have examined the sputter 

process in an attempt to elucidate the various mechanisms responsible. 

Stark   is recognized as the first to propose a model of an individual 

sputtering event occurring on an atomic scale. His 'hot spot' model treated 
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the sputtering event as evaporation of target atoms from a microscopically 

small high temperature region instigated by individual ion bombardment. 

Subsequently, he developed a collision theory model viewing the sputtering 

event as a series of binary collisions initiated by one ion at a time.    In his 

collision theory, Stark applied the conservation laws of elastic scattering 

along with the ideas of collisional cross sections to interpret the observed 

energy dependence of the sputtering yield, Y, on hydrogen ions bombarding 

metal targets. Y was observed to increase with increasing energy at low 

incident ion energies. The behavior changed at higher energies resulting in a 

plateau in the yield curve. Stark ascribed the low energy behavior to 

increasing transfer of energy between the incident ions and the target 

surface atoms. At higher ion energies, the incident ion penetrated deeper into 

the target as a function of increasing energy (smaller cross section) resulting 

in a smaller sputtering effect. This caused the decreasing sputter yield and 

subsequent plateau observed in experiment. In the 1950's, the use of 

accelerators became common and the sputtering yield was proven to always 

decrease at high enough energies, lending support to this description. 

Stark considered his hot-spot model and his collision theory of 

sputtering as two different views of one and the same process. Other 

investigators viewed them as contradictory models and in 1923 Kingdon and 
12 

Langmuir   used Stark's collisional theory to describe the ion-induced 

desorption of monolayers. Unfortunately, this led to the erroneous 

impression that collision theory implied that sputtering was a single-collision 

process leading to a strongly peaked angular distribution of sputtered 

particles. This impression, along with the experimental observation of the 
13 

angular distribution following the Knudson cosine law,   was considered 
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unambiguous evidence for rejection of the collisional theory of sputtering. It 

14 
took Wehner's   observations of crystal structure effects in the angular 

distributions from single crystals both to prove that local evaporation alone 

could not explain the sputtering phenomena and to reinvigorate the interest 

in a collisional theory of sputtering. 

With experimental evidence to support both theories of sputtering, 

Lamar and Compton   pointed out the predominance of binary collision 

processes in light ion sputtering and the predominance of local evaporation 

processes in heavy ion sputtering. This led with a little rephrasing to the 

modern qualitative classifications of the sputtering process. Elastic collisions, 

so-called knock-on sputtering, are the basis for the current models for the 

sputtering event. 

Elastic collisions are most important for understanding sputtering 

from metallic targets. A 10 keV Argon ion has one thousandth the velocity of 

-13 
the speed of light. It takes approximately 10    seconds for this ion to travel 

100 A in vacuum. This is much longer than the relaxation times of conduction 

-19 
electrons, about 10    seconds. Therefore, in inelastic collisions where some or 

most of the energy of the incoming ion is used to excite the electrons in the 

target atoms, the energy transferred to the conduction electrons will 

immediately be shared and dissipated by the other electrons, preventing any 

atoms from escaping. 



Three Regimes of Sputtering 

Examination of the behavior of sputtering events has led to the 

qualitative separation into three sputtering regimes: 1) the single knock-on 

regime, 2) the linear cascade regime, and 3) the spike regime (Figure 1). The 

single knock-on regime (Figure la) is characteristic of low energy, low fluence 

events. In this regime, the incident ion transfers energy to target atoms and 

after a small number of collisions, a few surface atoms are ejected if they 

receive enough energy to overcome surface binding forces. In the linear 

cascade regime (Figure lb) and the spike regime (Figure lc), the recoil atoms 

have enough energy to initiate second generation and higher recoils. These 

secondary collision 'cascades' can also provide energy to eject surface atoms. 

The difference between the linear cascade regime and the spike regime is 

determined by the spatial density of moving target atoms in the cascade 

volume. In the linear cascade regime, all the target atoms are at rest before 

suffering a collision with either an incident ion or a secondary recoil atom. In 

the spike regime, the density of collisions is so great that the atoms in the 

cascade volume are already moving as the cascade develops and subsequent 

collisions occur. The easiest way to differentiate between the linear cascade 

regime and the spike regime is to observe the sputtering behavior of diatomic 

molecules. A diatomic molecule will dissociate almost immediately after 

hitting the surface. If the sputtering yield is twice the yield of the individual 

ions then it is considered to be in the linear cascade regime. The subsequent 

cascades generated by the two atoms are relatively dilute and can be treated 

as a linear superposition of the individual ions. In the spike regime, however, 

the cascades are so dense that twice the energy is shared by all the atoms in 

the cascade volume as the individual ion bombardment. Depending on how 
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this energy is distributed, sputtering yields can be observed that will be 

substantially higher than twice the yield of the individual ions. All the 

theories and experiments summarized in this thesis will deal with the linear 

cascade regime. 
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Figure 1. The three sputtering regimes: (a) The single Knock-on regime; 

(b) The linear cascade regime; (c) The spike regime 



Collisional Theory 

Since sputtering theory has borrowed much of its formalism from 

collisional theory, an examination of some of the common tools and analytical 

techniques used in the theory is useful. The approach used in this thesis will 
1 ft 7 

mirror approaches used by both Sigmund   and Li.   Sputtering involves high 

energy collisions occurring on an atomic scale; thus, classical mechanics is 

used to describe the behavior of the colliding particles. In elastic binary 

collisions, the motion of two different particles interacting through a central 

potential V(r12) can be transformed into an equivalent representation 

involving the center of mass motion and the relative motion of the two 

particles. In the absence of external fields, the center of mass moves at a 

constant velocity and the dynamics of the collision can be determined 
17 18 

completely by the relative motion of the two particles.  '    This motion is 

equivalent to the motion of a single particle of mass (I = —— moving m a 

coordinate system fixed on the center of mass and subject to a central force. 



Figure 2. Scattering of particles by a central potential. 

To examine the behavior of particles scattered by a central field, that is, 

to follow the motion of these particles, we need to use a fundamental concept 

of scattering theory, the cross section (Figure 2). Under an atomic collision 

process involving projectile and target particles, the average fraction of 

projectile beam particles hitting a target of thickness x, density N and 

experiencing a collision can be characterized by its cross section a such that 

equation 1 holds. 

(fraction beam particles colliding with target) = N x c (1) 

Additionally, when, N x cr « 1 equation 1 represents the probability that a 

collision will occur between beam atoms and homogeneous randomly 

distributed target atoms before the beam atoms penetrate a path length x into 

the target. Analogously, the probability of a particle being scattered into a 

solid angle element dQ. at Q can be written as 



/~% ,~    <#V(# of particles scattered into dQ. at Q per unit time) 
a{Q.)dQ. = — - - - (2) 

/(incident flux density) 

c(Q,)dQ is called the solid angle differential scattering cross section or the 

differential scattering cross section. Examining Figure 2, it is obvious that a(Q) 

is independent of the azimuthal angle <|>. Therefore, a polar angle differential 

scattering cross section is defined as 

o(e)de = ja{Q.)sin&ded<\> = 2na(Q.)sin QdQ (3) 

The number of particles scattered into a ring dQ centered at 0 is 

dN = IlKbdb = ia{e)de (4) 

where b is the impact parameter, the distance of closest approach of the two 
19 

particles if they cannot interact with each other.    Combining equations 3 and 

4, the differential cross section can be related to the impact parameter by 

v{Q)de = 2%b—d® (5) 
dQ 

The impact parameter and the center of mass scattering angle can be related 

to the potential using the conservation of energy and angular momentum to 
20 

obtain the classical deflection function: 



Q = K-2b j r~2 V(r)    b i\-Yi 
dr 

10 

(6) 

where Er is the relative kinetic energy of the collision and rmin is the classical 

turning point determined by calculating the largest positive root to the 

equation 

V(r)    b2 =Q (7) 

Thomas-Fermi Potential 

The potential energy function used most extensively in analytical 

theories is the power approximation to the Thomas-Fermi potential. The 

21,22 
Thomas-Fermi potential is based on the Thomas-Fermi theory of atoms, 

where the electrons in an atom are distributed according to the Fermi-Dirac 

distribution function: 

/ = 
(  (E-e) 

e   kT   +1 

V 

(8) 

J 

where e is the chemical potential, T is the temperature, and k is the 

Boltzmann constant. It is instructive to examine this equation more closely in 

the zero temperature limit. At absolute zero, all states with energy less than e 

will be occupied and all states with energy above 8 will be unoccupied, e has 
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the properties of a cutoff energy and the Pauli exclusion principle forces the 

electrons to occupy all states from the ground state to the state with energy e. 

The total energy of an electron is composed of the sum of its potential and 

kinetic energies. It can be written as 

1 2M w 

where Va(r) is the electrostatic potential energy of a test charge located a 

distance r from the nucleus and PF is the Fermi momentum, the maximum 

momentum of the electrons. Treating e as a constant, the potential energy can 

be written as V(r)=V1(r)-e. The total number of electrons is equal to the 

integral of the density of states in wave vector space from k = 0 to kf. This 

allows the Fermi momentum to be connected to the number density of 

electrons through 

PF(r) = (3h3K2p(r)f3 (10) 

Poisson's equation can be used to relate the charge density -ep to the 

electrostatic potential -(l/e)V(r) 

V2V(r) = - 4ne2p(r) (11) 

Equations 9-11 can be combined to form a differential equation for the 

potential energy function 



Upon making the following change of variables, 

the so-called Thomas-Fermi equation results 

with the boundary conditions 

12 

1 d 

r dr 
2(rV) = -^-T(2M)3/2(-vf/2 
1 37U/T 

(12) 

r = 
(37t)/3   n  Z-K 

27A    Me2 
X = 0.885a0Z /3X = bX (13) 

rV = -Zel<& (14) 

 = <J)/J 

dx2   4x 
(15) 

O(0) = l,$(°o) = <D'(oo) = 0 (16) 

Equation 15 cannot be solved analytically but can be solved numerically. 

Using equation 14, the Thomas-Fermi potential for an isolated atom can be 

determined: 

V(r) = 
Ze2 Jr\ 

-<f> 
bj 

(17) 
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Equation 17 has the form of a coulomb potential multiplied by a screening 

function <J>. The function 0 represents the screening of the test charge from 

the nucleus by the other electrons in the atom with b representing the 

screening radius. A tabulation of the numerical solution to O —    can be 

23 ( r \ 
found in Torren's book.     A plot of <E> —    along with various power law 

approximations to the function is included as Figure 3. 

u 

IE-09 
0.1 

Distance (angstrom) 
10 

Figure 3: The Thomas Fermi screening function, 4>(X), and the power law 

approximations. X=r/a where a is the screening radius. Each straight line is 

a power approximation to O(X) and is valid only for a short distance. 
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The potential energy function calculated above works for the case of an 

atom and an isolated electron. In sputtering, we are interested in the 

23 
potential between two atoms. Firsov   applied Thomas-Fermi theory to 

diatomic systems and found that if the screening radius is written as 

a = 0.8853a0   Z{2 + z(2 (18) 

the potential can be approximated to first order by the Thomas-Fermi 

equation (equation 15). Therefore, for a diatomic system the Thomas-Fermi 

potential can be written as 

V(r)=z&Z-JL\ (19) 

where r is now the interatomic distance. This equation must also be solved 

numerically. The one caveat to this approach is that the potential is only 

valid for short interatomic separations, r < 1.0 Ä. 

Analytical Approximations to the Thomas-Fermi Potential 

Because the Thomas-Fermi potential is very cumbersome to solve 

numerically for most applications, several analytical approximations for the 

screening function have been developed. Some of the more common ones 

include the Sommerfield approximation, the Bohr screening function, the 
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Moliere screening function, the Lenz-Jensen screening function, the Krypton- 

Carbon(KR-C) screening function, and various power law approximations. A 
7 23 

full description of these functions are given elsewhere. 

All analytical theories of sputtering to date use a power law 

approximation to the Thomas-Fermi potential. In this potential, the 

interatomic separation of the two atoms are divided into several segments 

and each segment is approximated by a power function of (r/a); 

a)     s 

-(5-1) 

(20) 

where k and s are constants that depend on the interatomic distance r. This 

is the potential plotted in Figure 3 along with the numerical solution to the 

Thomas Fermi potential. 

Using the power law potential in equation 6, the integration can be 

solved exactly   to give 

f ~^s 

0 = _üC£ YA a , (21) 

\b. 

where ys = — B\ —,   = - J with B(m,n) corresponding to the Beta 

25           aE (   2A       2A\'2 

function,   e = r—=- and a = 0.8853a0  Z{3 + Z<3        (a is the Bohr radius 

= 0.529Ä). Equation 21 can then be inserted into equation 5 to give 
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9 

db     const • a 
M@)=2Kb^=j^ <22) 

Kinetic Energy Transfer to Target 

In sputtering, we are interested in the transfer of energy from 

bombarding particle to target. In other words, we want to calculate the 

energy loss cross section. This can be calculated from the angular cross section 

once a relationship between the transferred energy and the center of mass 

scattering angle is established. In the special case of a moving atom (1) 

colliding with a stationary atom (2), it can be shown   that the maximum 

energy transferred from atom 1 to atom 2 is given by 

Tm=7^^-TE = yE (23) 
(M1+M2Y 

after undergoing a head-on collision. The transferred kinetic energy T and 

the center of mass scattering angle can be related through this energy as 

T = Tm sin m ,   2j (24) 

When T« Tm, this equation points to 0 being small, and T can be 

approximated by 
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T -T 
0' 

(25) 

With this relationship and the angular cross section in equation 22, the energy 

loss cross section can be easily calculated. 

da(T)dT = da(e(T)).\^ 
dT J 

dT = 
C„ 

F T m+\ dT (26) 

27, 
where m=l/s and Cm is given   by 

Cm = —Xa m       2 

'M,V* 

VM2j 

'2Z{Z2e 

V     a 

2m 
(27) 

Xm is a dimensionless function of the parameter m that varies from high 

energies; s = 1, m = 1, X = 1/2, to very low energies; s = °°, m « 0, X = 24. 

Several values of X   are collected in Table 1. m 

Table 1. Values of A.m used in Equation 27. 

K 0.500 0.327 1.309 2.92 15 24 

m 1.000 0.500 0.333 0.191 0.055 0.000 
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Equation 26 was derived in the limit of small angle scattering corresponding 

to soft collisions. Using the power law potential, it has been shown to be 

remarkably accurate even up to high energies. 

Energy Loss Cross Section 

Two additional quantities needed to develop the theory of the linear 

cascade are the nuclear stopping cross section and the nuclear stopping power. 

The mean energy dE lost to collisions over a path length dx is 

dE = Ndx\d<5{T)TdT = NdxSn (E) (28) 

where Sn(E) is defined identically as the nuclear stopping cross section. 

Examining equation 28 and dividing both sides by dx gives the nuclear 

dE 
stopping power — = NSn (E). Combining this relation with equation 26 

dx 

gives the nuclear stopping power calculated using a power law potential: 

,F      iE yE A/v1_mr 
— = N f Tdc(T)dT =N\T       

m x1 dT =^- ^LE
l~2m (29) 

dx        o o    EmTm+l \-m 

With the calculation of the energy loss cross section, we have the tools 

necessary to treat the phenomena observed in the linear cascade regime. The 

theoretical approach used to investigate the linear cascade regime starts with 

the separation of the sputtering event into two phenomena. First is the 

creation of the primary recoil atoms by the incident ion. Next, the secondary 
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collision cascades develop until some of the atoms are ejected through the 

98 29 30 
surface. This is the approach followed by Almen and Bruce,   Thompson, 

31 
and Sigmund.    Thompson's derivation will be followed in this thesis. 

Thompson's Theory of Sputtering 

Thompson based his theory on atomic scattering theory and results 

from radiation damage studies. He made four initial assumptions: (1) the 

target was completely amorphous with randomly distributed atoms; (2) the 

target was infinite for the purpose of developing collision cascades and semi- 

infinite with respect to atom ejection; (3) only elastic binary collisions occur; 

and (4) the momentum distribution of high generation recoil atoms is 

isotropic. With these assumptions, Thompson was able to derive a theory 

that produces the explicit angular and energy distributions of sputtered 

atoms. 

Thompson started with the idea of an ion source supplying a flux, *F 

ions per second, of energy Ex to an infinite imaginary surface in an infinite 

target. The density of primary recoils created per unit time with recoil energy 

in the range dt at T can be expressed as 

p{El,T)dt = Ny¥da{El,T)dT (30) 

where N is the number density of target atoms. The above equation assumes 

that the ions pass through the surface only once. This assumption is valid for 

target ion interactions where the mass of the ion is much large that the target, 
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M1»M2. In light ion sputtering of heavy target atoms, back reflection of ions 

can contribute significantly to the sputtering yield and equation 28 must then 

be integrated over ion energy and direction. 

Every primary recoil will generate secondary collisions and 

subsequent cascades if the energy is high enough. Neglecting the initial surge 

of ions produced when starting the ion beam and assuming a stable ion beam 

is used, the ion source will rapidly form a stationary distribution of moving 

atoms initiated by primary recoils. In other words, there will be a constant 

number of atoms with a kinetic energy within a specified range at any time. 

The mean number of recoil atoms with energy in the interval (E', dE') 

initiated by primary recoils of energy T is defined as n(T,E')dE'. The total 

number of these atoms per unit time and distance can be calculated from 

yEi 

g{El,E')dE'=dE' J n{T,E')p{Ex,T)dT (31) 
E' 

where yEx is the maximum energy that can be transferred in a collision and 

gCE^E') represents the number of atoms generated in a unit energy interval 

around E' per unit time and distance. The quantity of interest to us is G(E,E'), 

the total number of atoms in the energy interval E' at any time regardless of 

when they were generated. This number should be proportional to the 

lifetime, x, of the atom in energy state E'. x can be defined as 

T="% = »"%    ■ <32> 
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where v' is the velocity of a target atom with energy E'. Multiplying g(E,E') 

by x gives the quantity we were looking for: 

dE ,     Y*l 

GCE1,g') = g(£i>g')'tt*g'= Jn(r,E')p(^,r)^r (33) 
v'dE'y 

'dx E' 

Examining equation 33, we now need expressions for both n(T,E') and 

dE'/dx. The radiation damage function which calculates the number of 

atoms displaced by one primary recoil is similar to n(T, E') and can be written 

as 

i(T,E') = Tm — 
E' 

(34) 

The constant Tm varies with the potential similarly to the constant Xm earlier 

and is compiled in Table 2. 

Table 2. Values of T . m 

m 0.500 

0.361 

0.333 i 0.250 

0.452 i 0.491 

0.00 

0.608 

The quantity dE'/dx can be calculated from equation 29 substituting E' 

for E. Combining this quantity with equations 30 and 34 and substituting 

them into equation 33 results in 
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G(El.E-)dE-= ('-7lr"    ™   N \Tdc(Es,T)dT (35) 

In most cases, E'<< yE2 and for small E' the lower limit of the integral can be 

set to zero. Recalling the definition of the nuclear stopping power, the 

nuclear stopping power of the ion, Sn   is just N times the integral. Because 

Sn   is a constant for any ion target combination, and using the above 

approximations, we can write 

G(Ex,E')dE'=AmVsf-^; (36) 

where. Am = = . GIB,, E')dE' determines the number of high m     Cmyl~mN l h 

generation recoils in the energy range (E',dE). Thompson's fourth initial 

assumption assumes that these recoils are isotropic. In other words, 

G(E{,E>,n')dE>dQ> = G{Ex,E>)dE>^- = AmVS?    dE[fi2m  (37) 

It is important to remember that the above equation is still differential in 

distance. This allows us to calculate the current of recoil atoms. Current is by 

definition the number of particles per volume element moving with a certain 

speed. The current of recoil atoms in the energy range(E', dE') moving in the 

area element (6',d0') is 

v'G^E'WdE'dn = AmVS« 4
d^Ef_i (38) 
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The flux of recoil atoms through a plane perpendicular to the flow of particles 

is proportional to this current. The flux across any plane not perpendicular to 

the flow of particles is proportional to the perpendicular flux multiplied by 

the cosine of the angles between the two planes. Inserting an arbitrary plane 

parallel to the surface inside the target and calculating the flux passing 

through this plane gives 

rnsft' 
<&{Ex,E',W)dE'da' = AJVS™ ,,   dE'dQ.' (39) 

with 9' defined as the angle between a plane perpendicular to the direction Q.' 

of the recoil particles and the surface plane. By geometry, this angle and the 

angle between the surface normal and the direction of the recoil particles are 

equivalent. 

Up to this point all calculations have been solved inside the target, 

hence the primes on the calculated values. Unprimed quantities from here on 

will refer to values outside the sample surface. To exit the bulk, the particles 

must pass through a surface and overcome surface binding forces. Thompson 

used ä planer binding potential to simulate these forces. The planer binding 

potential assumes all the equipotential surfaces felt by a particle leaving the 

bulk and entering the vacuum are both planer and parallel to the sample 

surface. This will have the effect of decreasing the vertical velocity 

component of the ejecting particle upon passing through the surface. The 

horizontal component will be unaffected. The vertical velocity component 
1/2 

will be decreased by (2U/M2)     where U is defined as the surface binding 

energy. The surface binding energy is the minimum energy a particle needs 
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to escape the surface. Due to a lack of alternatives, U is most often 

approximated using the heat of sublimation. 

Inserting a surface using the planer binding potential gives the 

following relations between the energy and the sputtering angle inside and 

outside the target: 

E' = E + U (40) 

_,    ^fEcös^Q + Ü 
cos 8 = , — 

4E + TJ 
(41) 

Using these relations, the Jacobian to transform from the volume element 

dE'dcosG'df to dEdcosed<|> is 

J 

dE' dE' dE' 
dE dcosG d(|) 

dcos0' dcosO' dcosG' 

dE dcosG d(J) 
d^' d<j)' df 
dE       dcosG        d(|) 

ZicosG 

(E + f/)cos9' 
(42) 

Incorporating equations 40 - 42 into equation 39 and dividing by the flux of 

incoming ions, we get 

Y(E,Q) = AmSi; (0 Ecosö 
4n(E + U) 3-2m (43) 
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which gives the number of sputtered atoms per ion, per unit energy, and per 

steradian. Examining this equation, we see that the energy and angular 

distributions are independent of each other with the energy spectrum 

reaching a maximum at 

E     = —-— (44) ra     2(1-/n) 

The angular distribution is cosine, peaking at surface normal, 8 = 0. 

Roosandaal Sanders Theory 

Using a normally incident ion beam, peaking of the sputtering yield at 
32 

surface normal has been observed by some researchers.    Unfortunately, as 

the incident ion beam moves away from surface normal, the peak in the 

distribution also shifts away from surface normal as long as the energy of the 

incident ion is not too large. Returning to the initial assumptions of 

Thompson, this off normal peaking is thought to result from anisotropy in the 

momentum distribution of the recoil atoms and the subsequent cascades. 

This anisotropy would result in a "memory" of the incident ions angular 

direction being partially retained by the collision cascade. Roosandaal and 
33 34 

Sanders  '    examined this anisotropy and derived angular and energy 

distributions for four different cases. Other than discarding the idea of an 

isotropic momentum distribution, they used the same assumptions that 

Thompson used in linear cascade theory. 

The four cases considered by Roosendaal and Sanders are as follows: 
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(1) The incident ion creates primary recoils and these recoils form 

subsequent cascades. The ion is ignored completely after it has finished 

creating primary recoils. This follows the assumptions Thompson used to 

calculate the flux of sputtered particles. The interaction of the ion with the 

primary recoil can be described using a power potential with the probability 

of an ion of energy Ex producing a recoil with energy T at polar angle 0 and 

azimuthal angle § measured with respect to the incoming ion as 

dc{T,%,$) = Am (£)r-'-m5 
f pr\ 

COS0 - 
V 

]dE, 
dT cose 

i J 

d§_ 

2n 
(45) 

The momentum density of these recoils can be written as 

S(T,E',COSE',§') = C 
T       3  T 

■ + 

lA M, 
■cose 

IE'2 ' 2     'X VM2 
v Ei     V J 

(46) 

where T is the energy of the primary particle, E' is the recoil energy, e' is the 

angle with respect to the incident particle, and (j)' is the azimuthal angle of the 

recoil. In the case of primary recoils, M1=M2 and higher generation recoils are 

characterized by the angles e' and (j)' measured with respect to the primary 

recoil. 

(2) The incident ion can be back scattered toward the surface by target atoms 

and kick out surface atoms thus acting as the primary recoil. This is 

especially important for light ion sputtering when M1 < M2. Analogous to 
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case 1, the target-ion interaction can be described by a power potential to give 

the following cross section: 

do(T,Q,ty) = Am(E)rl-md cosG 
M+M,   lE-T    M.-NL  I   E   A 

2M,    V   £ 2Af,    V^-ry 

dTdcosQ — 
2tt 

(47) 

(3) When the incident ion is of low energy, all the energy will be dissipated in 

the region of the surface. All ions therefore behave as primary recoil atoms. 

The momentum density will follow equation 46. 

(4) The last case is limited to oblique incidence collisions where the incident 

ion produces direct recoils in a specified momentum interval and no collision 

cascades will develop. The ion-target interaction is given by equation 45. 

For cases 1-3, the energy integrated angular distribution for an ion of 

energy Ej impacting a surface at Ql and transferring energy in excess of the 

surface binding energy U, T'»U is 

F(£,e,.,e,(t) )oc 5(£,)cos0 [l + öVt/C^K-cose, -F(9 ) + %n sine cos<|))] 

2-3cos20    cos29 /    ^—     1 I   I IN        II I    UN        IF 

for 0 * 0, F(0 ) = 
2sin29       2sin0 

1 + ^9 Wl-sin8 
4sin20i   U + sine 

andY{E,Qi,Q,Q>)°cB(El)[l-S-JTJC(El)cosQi]forQ = 0 (48) 

B(E1) is a global constant that depends on the energy of the incoming ion. We 

are most interested in the shape of this distribution, so the exact value of B is 



unimportant for us. The constant C(E1) does affect the shape and has the 

following form for the cases above: 
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C(E,) = 
VYX 

M 

M2EX 

Case I 

Case II 

Case III 

, „   „,     Mx+M2     M, - M2 where g(El,T) = —! 2-+    '       2 r -l 

2Af, 2M,     y£,     1       , i i     J—L _ i _ Y In 
I r J 

(49) 

The Roosandaal-Sanders theory accurately predicts the off normal 

peaking of the yield curve. Unfortunately, it also inaccurately predicts a 

cosine shape which is not observed in experiments. The shape in general 

shows over-cosine behavior, e.g. it follows a cos 0 with l<n<3.    This over- 

cosine behavior is seen in both cases of normal and off normal incidence ions. 

Whitaker, Li, and several other experimentalists ' ' '   have empirically 

modified the Roosandaal Sanders equation to include a cos 6 term: 

7(£,0,.,e,(|) )ocß(£1)cos"0 [l + 6^/UC(El)(-cosQi -F(0 ) + %TC sinG cos<|> )] 

for 9 * 0, F(9 ) = 
2-3cos20    cos2 9 i a( 

2 sin2 9       2 sinG 
1 + 

V 

cos2 9 
4sin2 9 

In 
1-sinG 

l + sin9 

and Y{E,Qi ,9,<t> ) «= B(EX )[l-8Vt7C(£, )cos9,]/or 9 = 0 (50) 
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The new equation is fit to the experimentally obtained data using B(E1)/ n, 

and U as fitting parameters. This approach provides reasonable fits to 

experiment although the physical significance of the fitting parameters is lost. 

Regardless, the convention of using B(E1), n, and U as fitting parameters will 

be followed to evaluate the experimental data in this thesis. 



Chapter 2. Experimental Characterization and Procedures 

The sputtering apparatus can be segmented into four basic systems: (1) 

the ion source and its associated optics, (2) the laser induced 

fluorescence(LIF) detection system, (3) the ultra high vacuum (UHV) sample 

chamber including the surface characterization/residual gas analysis 

components, and (4) the master control computers with their assorted 

software. 

Ion Systems - Hardware Specifications 

The ion optics system consists of an ion source, 2 einsel lens, a wein 

filter, and several apertures and deflection plate electrodes (Figure 4). The 

core component of the ion optics system is a commercial Colutron ion source 

Model 101 - Q (Figure 5). The main components are a tungsten filament 

cathode and a stainless steel disk anode with a 1 mm diameter central hole. 

These components are mounted in a quartz glass holder assembly which 

directs the flow of gas molecules across the filament. The cathode-anode 

spacing is set to 6 mm and maintained by tension created by two support 

wires. The filament is voltage regulated at 15 volts, 19 amps using an HP 

6261B DC power supply. The anode is also run in voltage regulation mode at 

75 volts, 0.5 amps using an HP6448B DC power supply. The entire ion source 

and two HP power supplies are floated at the energy of interest by an Fluke 

Model 415B high voltage power supply. 
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Figure 4. Ion Optics System 
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Figure 5. Colutron Ion Source. 
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The sputter gas is introduced slowly into the source until an arc initiates and 

a stable plasma forms between the cathode and anode. A stable discharge is 

maintained with gas pressures between 2xl0"6 - lxlO'5 torr as measured in 

the ion beam chamber (30 - 50 |X measured at the gas inlet leak valve). 

Standard operating conditions and optimum long term stability of the ion 

beam were obtained using an ion beam chamber gas pressure of 2.8xl0~6 torr. 

The first einsel lens is used to extract the ions from the ion source and focus 

the beam to the first aperture. The einsel lens consists of three cylindrical 

stainless steel electrodes. The first and third electrodes are held at ground 

while the voltage on the center electrode is varied. This produces a voltage 

gradient and corresponding electric field that bends divergent ions toward 

the center axis of the lens. The ions leave the first einsel lens and the center 

section of the resulting beam is selected by the first aperture. The ions then 

encounter a vertical deflection plate that centers the beam into the entrance 

of the wein filter. The wein filter is composed of electromagnets and variable 

electrodes in a configuration that produces crossed magnetic and electric 

fields. The ions enter a region of constant magnetic field and are bent at right 

angles to this field. Heavier ions moving at lower velocities are diverted 

more by the field due to their increased residence time inside the field. In the 

experiments described in this thesis, the wein filter electrodes were set to 100 

volts and the magnetic field was tuned to the mass of interest by varying the 

current entering the coils of the electromagnets. The variation of magnetic 

field as a function of current was measured using a hall probe (Figure 6). 

The ions leave the wein filter and encounter an aperture plate held at ground. 

By varying the voltage on the electrodes, ions of a certain velocity(mass) can 

be selected to pass unobstructed through the aperture plate. An experimental 

scan of a mixed N2    and N ion beam is included as Figure 7 . The ions are 



33 

then deflected through a 10° bend and enter the UHV chamber. The ions are 

refocused by a second einsel lens and deflected by a pair of vertical and 

horizontal electrodes to pass through a final aperture plate before hitting the 

sample. All variable voltages to the electrodes are controlled by many turn 

potential meters and recorded in the lab manual on the day of the run. These 

readings are compared with simulations run using the Simion ion trajectory 

code which will be discussed in a later section. 

tfl 
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O 
03 
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Figure 6. Wein Filter Field vs. Coil Current. 
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Figure 7. Wein filter scan of mixed N2  and N  ion beam. 

The entire ion optic system up to the 10° bend is mounted in a high 

-8        -7 
vacuum(HV) chamber, base pressure 10 -10   torr. This pressure is achieved 

by using a liquid nitrogen trap on a Varian 6" diffusion pump backed by a 

Edwards model E-2M two stage roughing pump. A Varian Turbo V-60 

turbopump is connected at the bend to provide a differential pumping stage 

to prevent neutral atoms from contaminating the ultra high vacuum of the 

main sample chamber. The neutral atoms are unaffected by the deflection 

voltages and collect at the bend elbow where they are removed by the 

turbopump. The voltage source to the bend deflector plates is connected to a 

medium voltage switch controlled by the TTL pulse from a Camac DAC 

controller. This provides the 'flag' for the ion beam during an experiment. 
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Simion Simulations 

Sputtering requires a well-defined and well-characterized ion source. 

It is very difficult to develop a feel for the effects of varying the potentials on 

the many adjustable electrodes present in this system. A simulation of the 

entire system detailed enough to concentrate on individual components was 

necessary to characterize the ion source fully. The simulation was conducted 

for two purposes: (1) the parameter space of all the ion elements was 

examined to find the optimum operating conditions which would provide the 

maximum beam intensity on the sample, and (2) the behavior of the wein 

filters was examined to verify the conditions necessary to mass resolve the 

ions in a mixed beam, e.g., N+vs N£. 
40 

The Simion PC version 4   electrostatic lens analysis code was used to 

simulate the ion optics system. With this code, the user defines a 16,000 pt 

array of electrode and nonelectrode points to simulate the ion optics of 

interest. The array is then numerically refined using overrelaxation methods 

until the potential between points converges to user selectable limits. This 

array is stored in a fast adjust file to allow easy variation of electrode 

potentials and subsequent calculation of voltage contours and ion 

trajectories. The Simion code does not treat space charge effects so the results 

achieved will not correspond exactly to experiment but are used to find order 

of magnitude corrections. 
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Extraction conditions 

The first components examined using the Simion code were the ion 

source and first extraction optic. Whitaker and Li measured a maximum ion 

flux of 200 nA on the sample for light ion sources (e.g., Ne, Ar) without using 

the wein filter. Wolfram Maring, a postdoc in the Watts group, suggested the 

low beam current was caused by inefficient extraction conditions. The 

extraction region was modeled using Simion and ion trajectories initiated 

using starting points recommended by Coultron, the ion source 

manufacturer. The potentials on the electrodes were set using the values 

measured in the lab (Figure 8). As can be seen in Figure 8, the extraction 

regime was very inefficient and many ions did not propagate through the 

first einsel lens. The extraction optic was too far from the ion source anode. 

Adding an extension piece to the extraction optic would bring the extraction 

region closer to the ion source anode. The ion beam would still be tightly 

compressed and subsequently focused through the aperture (Figure 9). Using 

these results as a basis, a variable adjusting extension screw was designed for 

the first extraction optic. Using a separation of 10 mm between the anode and 

extraction optic, a doubling of the ion current was observed on the sample. 
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Figure 8. Ion Extraction Region. 
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Figure 9. Extending Extraction Optic. 
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Wein Filter parameters 

Whitaker and Li used single component ion beams so did not use a 

wein filter. Rather, they operated the ion source with all the wein filter 

components grounded. A wein filter can be used to mass resolve the mixed 

beam resulting from the ionization of a diatomic species or a halide salt. 

During the course of mass separation, the ion beam spread out with a 

corresponding decrease in intensity measured on the sample. The operating 

parameters required to mass separate the ion beam with minimal impact on 

the intensity transmitted to the sample had to be calculated. This data could 

be efficiently gathered using the Simion program. 

The limitations on the maximum array size that could be input into 

the program forced us to divide the optics simulation into two parts to 

achieve the resolution necessary to accurately follow the ion trajectories to the 

sample. The most obvious dividing point was the 10° bend, with the first 

stage consisting of the Colutron ion source, the first einsel lens, the first 

vertical deflector, the wein filter and the associated apertures (Figure 10). The 

second stage starts with the first aperture after the 10° bend and includes the 

second einsel lens, a set of vertical and horizontal deflection electrodes, the 

final aperture, and the sample target (Figure 11). 
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Figure 10. First Stage of Ion Optics. 

TTTTl f 

Figure 11. Second Stage of Ion Optics. 
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The behavior of the wein filter was simulated using the first stage. The 

experimentally determined voltages that produced an ion beam on the 

sample when the wein filter was turned off were used as the input voltages 

for the trajectory calculations. N2  ion trajectories were initiated at the anode 

aperture and propagated through the optics to the exit aperture. These 

trajectories were saved as an input file for subsequent use as the wein filter 

parameters were varied. A constant 100 volt potential, - 50 volts top 

electrode/50 volts bottom electrode, was applied to the wein filters 

electrodes. This caused the N2 beam to be deflected up to impact the top 

electrode (Figure 12). 

Figure 12. N2  without magnetic field and 100 volt E field. 

A homogeneous magnetic field is manually inserted into the area 

occupied by the wein filter electrodes. By varying the strength of this field, 
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the ion trajectories can be modified until the ions once more pass through the 

exit aperture (Figure 13). 

Figure 13. N2 with 210 gauss magnetic field and 100 volt E field. 

Changing the mass of the ion beam causes the beam to once again be 

deflected toward the wein filter electrodes (Figure 14). 

Figure 14. N+ with 210 gauss magnetic field and 100 volt E field. 



42 

The magnetic field is then manually varied until the new mass of interest 

passes through the exit aperture. The resulting values were compared to 

experimentally-determined values to verify correct operation of the wein 

filter. The values for N andN2 are collected in Table 3. 

Table 3 : Wein Filter Magnet and E field parameters 

Ion Simion(B) I Exp.(B) E-Field 

N+ 145 195 100 

N2
+ 210 297 100 

N+/N2
+ .69 .67 

The absolute differences between the predicted and measured fields are not 

important. The ratio of the fields is of more interest since it represents the 

separation of the two masses. The data in Table 3 reveal that these values are 

in good agreement. 

Ion Beam Focusing 

Finally, the second stage ion optics were used to determine the correct 

aperture dimensions needed to separate the UHV sample chamber from the 

HV ion chamber. There are two conflicting issues influencing the choice of an 

aperture size. First, the aperture acts as a controlled leak from the HV to UHV 

chamber. The rate of sample contamination by background gas species is 

directly proportional to the pressure inside the UHV chamber. To avoid 
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contamination of the sample during the time frame of a sputtering 

experiment the aperture needs to be as small as possible. Second, the ion 

beam needs to be focused through this aperture. If the aperture is too small, 

the ion beam focuses at the aperture resulting in spreading out of the ion 

beam at the sample surface (Figure 15). This will cause a marked degradation 

in measurable current on the sample. An aperture size was chosen which 

achieved minimum expansion of the ion beam and at the same time kept the 

background pressure under 4x10   torr during the experiments(Figure 16). 

*¥■» k TflfiTl 

Figure 15. Small aperture spreading of ion beam. 
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Figure 16. Correct aperture and focusing on sample. 

LIF System - Hardware specifications 

The LIF detection system includes the laser systems, fiber optic 

transmission cables, rotatable detector assembly, and the photo multiplier 

detector (Figure 17).   The laser systems consist of a Coherent 699-29 Autoscan 

ring dye laser pumped by a Coherent Inova 100 Argon Ion laser. The 514.5 

nm line of the Argon ion laser is used to saturate the absorption of the 

Rhodamine 6G dye used in the ring dye laser for the series of experiments 

covered in this paper. The 699-29 Autoscan laser is a mode locked, 

continuously scanning, frequency stabilized traveling wave ring dye laser 

with built in wavemeter. The laser beam is steered using two x,y adjustable 

mirrors to a 1 cm focal lens and fiber optic holder mounted on two x, y, z 

translation stages.   The fiber optic cable is a fiberguide industries Superguide 
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G UV-Visible fiber with an inner core diameter of 50 fi and a wavelength- 

range of 180-1100 nm. The fiber optic cable is threaded through Teflon tubing 
41 

using techniques described in Scoles.    The laser is transmitted through 14 

meters of fiber optic cable where it enters the UHV sample chamber through 

a pilot hole drilled in a 3.25 inch conflat flange. The fiber is connected and the 

corresponding hole sealed using low vapor pressure, high vacuum sealant on 

both the inside and outside of the flange. The fiber optic cable terminates in 

a second fiber optic holder mounted into a detector assembly that rotates 

about the sample in the polar plane. 



46 

Stepping Motor 
Ion Cleaning Gun 

Steering 
Mirror lens 

-e—a- 
FO coupler 

To Ion 

Source 

View port 

Fiber Optic 
Cable 

V 
Steering 
Mirror 

Dye I-100 

Figure 17. UHV Chamber and Laser Systems. 
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Figure 18. LIF Detector. 

The detector assembly is similar in construction to detectors developed 

for molecular beam work by Hefter and Bergman and Shimizu and Shimizu 

(Figure 18). The laser beam enters the detector assembly from the top and is 

collimated by several apertures before passing through the interaction region 

and exiting into a beam dump. The sputtered Zr atoms pass through the 
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detector perpendicular to the laser beam (that is, into the plane of the paper in 

Figure 18), where they are excited. On the left and right of the crossing point 

of the two beams are two silvered high reflection hemispherical mirrors that 

collect the fluorescence into a 6 mm fiber optic bundle centered in the right 

hand mirror. The focal length of the two hemispheres has been chosen to 

maximize the focus of the fluorescence into this bundle. The fluorescence is 

carried out of the UHV chamber by the fiber optic bundle into a cooled red- 

sensitive RCA 31034-2 photon multiplier. The photomultiplier is run in 

photon counting mode where each photon causes a pulse of electrons that are 

amplified, discriminated, and then counted. 

The current pulse from the photomultiplier is fed into a EG&G Ortec 

model 9301 fast preamplifier for a factor of ten voltage gain and then into a 

Ortec 9302 amplifier-discriminator. A multiturn control adjusts the 

discriminator level between 50 mV and IV. This voltage pulse is then fed into 

a Standard Engineering Model TS 201 timer sealer. An Ar sputtering 

experiment was used to set the correct discriminator level. A 45° incident Ar 

ion beam produced 470 nA of current as measured on the sample. Using the 

ground state frequency of 16786.98 cm   for zirconium and measuring the 

sputtering yield at 45° for 5 sets of 5 second integrations produces the 

following curve (Figure 19): 
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Figure 19. Signal vs. Discriminator level. 

Differentiating this curve produces the graph shown in Figure 20. 
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Figure 20. Discriminator differential curve. 
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Examining Figure 20, one can determine a discrimination level that retains 

the majority of the signal while removing background counts caused by after 

pulsing in the photomultiplier. The discriminator level was set at 15 turns. 

The wavelength of the laser is controlled by the internal wavemeter of 

the Autoscan laser (precision of .0017 cm   ). The excitation wavelength for 

the Zr ground state and first excited state used in the experiments in this 

thesis occur at 595.5 nm and 579.8 nm. The fluorescence wavelengths cover a 

wide range, starting from the excitation wavelength. A filter pack that allows 

only photons in the range 650 - 850 nm is inserted between the fiber optic and 

the PMT, which filters out both photons from the incoming laser light and 

long wavelength photons characteristic of thermal sources. Thus, the filter 

pack greatly reduces the background due to scattered laser light (although 

scattered laser light still remains the largest contributor to background 

counts). 

The detector is mounted on a computer-controlled rotation stage. The 

rotation of the detector is limited by the Auger spectrometer in one direction 

and the ion beam in the other direction. This effectively limits the range of 

angles that can be scanned to 103°. The origin of the detector is set using limit 

switches on the rotation motor, which produces a reproducible home position 

for measurements. The ion beam enters the chamber at 135° compared to the 

home position. 

Detection Efficiency - Zr spectroscopy 

An examination of the detection efficiencies of the ground state and 

first excited state is necessary before any comparison between the sputtering 
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yields can be accomplished. Figure 21 is a partial schematic of the energy- 

levels of Zr showing some of the excitation and decay pathways of interest in 

this thesis. 
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Figure 21. Energy level diagram of zirconium. 
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Table 4 lists all the major decay pathways, listed by Corliss and Bozmann,   of 

the two upper states that must be considered in this thesis. The observed 

signal is proportional to the number of atoms in the required state, the 

fraction of those atoms that are excited, the fraction of the atoms that 
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fluoresce in the detection region, and the fraction of atoms that are detected 

by the photomultiplier. In other words, we are interested in calculating the 

various quantities in the following equation: 

N        aN     F      F F observed atoms     excited     fluorescence     detected (51) 

Table 4. Major decay pathways of two upper states of Zr (used in thesis). 

Lower 

State 

Efcm'1) 

AE 

(cm1) (A) 

gAxlO8 

(sec1) 

transitions from 5F1° at 16787 cm'1 

0 16787 5955 .0088 

4197 12590 7940 .0026 

4376 12411 8055 .0026 

4871 11916 8389 .0160 

5023 11764 8498 .0056 

"ransitions from 3D2° at 17814 cm"1 

0 17814 5612 .0013 

570 17244 5797 .017 

4186 13628 7336 .0083 

4376 13438 7440 .0190 

4871 12943 7724 .0016 

5023 12791 7816 .0021 

5249 12565 7957 .0140 
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Fraction of atoms excited by laser 

The sputtering experiment is operated above the saturation point in 

the power curve. At the saturation point the fraction of atoms that is excited 

by the laser is proportional to the ratio of the statistical weight, g = 2J+1, of 
3 5 

the two states. Thus 60% of the F2 atoms would be excited to the Fj° state 

and 71% of the F3 state would be excited to the D2 state. 

Fraction of atoms that fluoresce in detection volume 

The fraction of atoms that would fluoresce in the detection volume of 

our detector is dependent on both the velocity of the atoms and the lifetime of 
43 

the upper state. Pellin and Wright   measured the velocity distributions of the 

ground and two lowest excited states of Zirconium and found them to be 

indistinguishable. At 1-3 kev, the energy distributions follow Thompson's 

equation (see Chapter 1, equation 43) fairly accurately with U= 6.305 eV and 

m = 0 corresponding to the hard sphere model. Plotting this equation, the 

most probable velocity is 2.6 x 10   cm/sec (Figure 22). 
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Figure 22. Fraction of Fx atoms that will radiatively decay before leaving 

the detection volume. 

ft 7 
Measurements by Whitaker and Li indicate the average distance from 

the point where a Zirconium atom is excited by the laser to a point where it 

leaves the detection volume is 0.3 cm. The velocity of a Zr atom with energy 

e is 1.46x10 Ve cm-s'1 with e measured in eV.  The time it takes a Zr atom to 

-fi    -1/2 
transverse the 0.3 cm detection volume is 2x10   e     seconds. The fraction of 

atoms of an energy e decaying in the detection volume can be calculated from 

/, flourescet (e) = l-e 
-2»1(T 

(52) 

5„ o 
where x is the lifetime of the upper state. The lifetime of the Zr Fx   state is 

44 
228 ± 10 ns.     Figure 22 plots the fraction of atoms decaying in the detection 
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volume as a function of velocity as well as the relative velocity distribution of 

these particles. We are interested in the total fraction for all velocities. To get 

this number, Thompson's equation is normalized to determine the fraction of 

atoms in the energy range e0 to e0 + Ae 

_ 2C/e0Ae 

[U + eJ 

Equation 53 is then multiplied by equation 52 and integrated over all energies 

to determine the total fraction of excited atoms that decay in the detection 

volume. 

(            (-2*10-«^ 

l_cl    «*    J de 
V                      ) 

f~-=Wl    (U + z? (54) 

Using U=6.305 eV and x = 228 ns, 82% of the ¥° atoms fluoresce before 

leaving the detection volume. 

Hannaford and Lowe did not measure the lifetime of the D2 state but 

did measure the lifetime of the D3 state as 267± 10 ns.6 Using equation 53, 

this would predict 79% of the D3   atoms will fluoresce before leaving the 

detection volume. This lifetime was measured using laser induced 

fluorescence techniques and is most likely correct. Using the data from the 
2 

tables of Corliss and Bozman, we would calculate a lifetime of 843 ns, 790 ns, 

and 776 ns for the F°, D2°, and D3° states respectively (using x = [^iAi)  ). 
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The discrepancy is addressed by Hannaford and Lowe and is explained by 

the experimental methods used by Corliss and Bozman to construct their 

table. Corliss and Bozman's data were based on discharge data to create the 

excited states. Many higher states are created simultaneously and these 

higher states can decay into the upper state of interest resulting in an 

unusually large lifetime. The Corliss and Bozman data must be used with 

caution, but can be used to determine the relative lifetimes of the three states 

of interest to this thesis. The data clearly shows the lifetime of the D2° state 

falling between the F° and the D3° state. Thus between 82% and 79% of the 

D2 state will fluoresce in the detection volume. These values are similar 

enough that they will be assumed to be equivalent for the work in this thesis. 

Fraction of atoms detected by photomultiplier 

The fraction of fluorescence emitted in the detection volume that is 

passed by the filters (650 nm to 850 nm) in the photomultiplier can be 

estimated from the branching ratios of the various states. Using the gA 

values from Table 4 we can calculate this fraction using the following 

equation. 

  Z^°    detected /cc\ 
detected  ~       X=i      '. W^V 

LsKu 

o 5     o 
Assuming only 50% of the 8498 A decay from the Fx state is detectable, 67% 

of the atoms in the Fx state will decay with wavelengths detectable by our 
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system. 71% of the D2 system will decay with detectable wavelengths. To 

normalize the data for differences between excitation efficiency and detector 

efficiency, the data needs to be divided by the product of fdetect and f   it. The 

Ft data needs to be divided by 0.40 and the D2 data by 0.50. 

UHV Sample Chamber and Surface Characterization 

The UHV chamber shown schematically in Figure 17 is made of 

stainless steel and is pumped out by a Balzers turbo pump backed by a 4" 

Acatel diffusion pump and rotary stage pump. All flanges incorporate the 

use of metal seals to insure a base pressure of 5x10"   torr. A titanium 

sublimation pump is used to preferentially remove 02 from the residual gas 

atmosphere measured in the chamber. 

The sample specimen is held by a VG 3-way sample manipulator 

mounted on the top of the chamber. The sample manipulator provides x, y, z 

translation as well as polar and azimuthal rotation of the sample. Once the 

sample has been mounted on the sample holder, it is aligned so that the 

surface and center of the sample coincide with the center axis of the chamber. 

This is accomplished using an alignment cone constructed specifically for this 

purpose. 

An E beam heater attached to the back of the sample holder is used to 

flash heat the sample after long periods of sputtering or sputter cleaning. The 

flash heating, up to 800° C, removes absorbed contaminants from the sample 

surface. The surface contaminants are monitored using an Auger 

spectrophotometer both before and after an experiment. A new sample 
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usually has a large fraction of absorbed C, N, and O on the metal surface 

(Figure 23). Because heating alone rarely removes these contaminants, 

sputter cleaning is usually necessary. An electron gun is mounted in the 
.5 

chamber for this purpose. The chamber is back filled with a pressure of 1x10 

torr of argon gas and the resulting ion beam rastered across the sample 

surface. Figure 24 shows the clean surface that occurs after sputter cleaning 

and subsequent annealing. 

Figure 23. Auger scan of a dirty surface. 
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Figure 24. Auger Scan of Clean Surface. 

Control Computers and Programs - Hardware 

The control system for the experiment consists of an IBM PC AT, 

CAMAC crate, and Apple 2E computer. The Apple computer controls the 

laser system and is slaved to the IBM master computer through a serial 

interface. The CAMAC crate holds the amplifier discriminator for photon 

detection, the timer scalar for photon counting, and a DACA board to control 

the shutter on the ion and laser beam. Several programs have been written 

for the IBM PC to optimize the interfacing of the various components. 

Programs - Master Menu 

The master control program is a Turbo Pascal menu program 

(pmesprog.exe) that allows the user to select the type of experiment they 

would like to run. The menu consists of 8 selections as follows: 
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1. Auger 

2. Mass 

3. Freq 

4. Angular 

5. DAC 

6. BASIC 

7. DOS 

8. initCAMAC 

The selections for the most part are self explanatory. Auger allows one to 

electronically record or plot Auger data. Mass allowed one to electronically 

record or plot Mass Spectrometry data - this selection was disabled when the 

mass spectrometer was removed. Freq and Angular allows the user to run 

frequency or angular scans. DAC is used to test the D/A converter and to 

open and close the ion beam shutter. BASIC puts one in the BASIC language 

directory to allow the user to run various characterization programs and DOS 

transfers the user to the DOS operating system. The Init CAMAC selection 

rezeros all the CAMAC crate components and is always initiated at the start 

of a run. 

Auger program 

The Auger program is written in Pascal and interfaces the Auger 

Spectrometer, the Timer Sealer, and the A/D converter to the IBM PC to 

produce an electronic copy of the auger scan. The program starts with a sub 
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menu that allows the user to choose between recording an auger spectrum, 

plotting a previously recorded auger scan to the screen, or obtaining a listing 

of previously recorded spectra saved on the hard disk. The auger scan 

program prompts the user for the input data required to run the experiment. 

The input data starts with an output file name which the program uses to 

save in a DOS directory named c:/sputter/augdat. The convention has been 

to name this file beginning with an as and then including the date and run 

number. For example as082703.dat would be the third auger scan taken on 

august 27. The year is not recorded but can be obtained by examining the 

date when the file was generated using any regular DOS file program. The 

operating parameters set to run the Auger are then entered including the 

lower limit of the voltage scan, usually set at zero; the upper voltage scan 

limit, set at -600 volts; the scan speed, set at 3 eV/sec; the voltage scale, set at 

100 volts/div; the sample speed, set at the (scan speed) /(# of data points at 

each voltage); the number of data points averaged at each scan point; and 

finally a comment line to record any pertinent observations. All of these 

parameters are set by the user on the Auger control unit. The program then 

calculates the number of points in the interval specified by the lower and 

upper limits and sets up the arrays to store the data. Once the Auger scan is 

started, the program uses the A/D converter to input the x, y voltage data 

from the spectrophotometer. The data is written to the screen as well as the 

output file at the end of the scan. The auger plot program reads the data 

from this output file and replots it to the screen. 
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Mass spectrometer program 

The mass spectrometer program operates similarly to the auger 

program. When the mass spectrometer was removed from the system, this 

program was disabled so shall not be explained in any detail. 

Frequency Scan Program 

The frequency program is a Pascal menu that allows the user to select 

between recording a frequency scan, plotting a previously recorded scan, or 

listing previously recorded scans saved to the hard disk. The frequency scan 

program is a BASIC program used to record a frequency scan on the sample 

keeping the scan angle fixed. The program interfaces the IBM PC to the Apple 

2E, the compumotor, the ion beam shutter, the laser shutter, and the 

photomultiplier tube. The first input parameter requested is the name of the 

output file to store the data which defaults to the c:\sputter\freqdat\ 

directory. The convention is to start the file with a "fs" followed by the date 

of the scan. The next input parameter requested is the integration time. The 

integration time is the time at each step of the scan the timer sealer will pause 

to collect data. The data written to the output file will be in units of 

counts/second so the data will be divided by this integration time if it 

exceeds 1 second. The standard time used in this thesis was 5 seconds. 

The next input parameters are the number of scans, the detector 

position, the starting energy of the laser in cm , the frequency range to scan, 

and the increments in megahertz (MHz). Up to 100 scans can be recorded to 

disk although the standard number used was 5 scans. These scans are then 
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averaged to give the data presented in this thesis. The detector position is 

usually set between 45° and 60° as measured from surface normal of the 

sample. Once the user inputs the starting energy, the interval, and the 

increment to move the laser, the program calculates the number of steps 

necessary and starts the scan. The sample is rotated to the user defined angle, 

all shutters closed, and dark background counts collected for 5 sec. The laser 

wavemeter is queried for the current laser frequency and changed to the 

starting frequency as needed. The data collection proceeds in the following 

manner: Photon counts are measured with everything on, the laser on, and 

then the ion beam on. These counts along with the difference using the 

following formula Nsignal = Nallon - Nlaser -Nion + Ndark are recorded to screen 

and file. The laser is then scanned forward in frequency and the next data 

points taken. The laser frequency is checked every 10 points against the built 

in wavemeter and frequency corrections are made at this time. 

Angular Scan program 

The angular program is very similar to the frequency program. It is a 

Pascal menu program that presents the user with the choices of taking an 

angular scan, plotting a previous scan, or displaying a list of previous scans 

present on the hard drive. The angular scan program is written in BASIC and 

its first input parameter is the standard output file name. Following the 

standard convention, the file name starts with "an" followed by the date. The 

program then queries the user for the integration time, # of spectra, starting 

angle, ending angle, and angle increment. These parameters are used to set 

up the number of steps in the scan and the corresponding data arrays. 
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Several characterization data are then entered including the ion sputter angle, 

sample metal, sputter ion, photomultiplier voltage, ion beam current, and ion 

beam voltage. These data are entered in the lab book and in the heading of 

the electronic record for redundancy. The laser frequency in cm"1 is then 

entered along with the number of steps to scan before pausing. The program 

then starts and runs like the frequency scan program with the difference that 

the frequency is now held constant and the detector angle changed for each 

point. The laser frequency is also verified at every point and corrected as 

necessary and the program will pause after a specified number of steps so 

that the sample can be flash heated to remove any absorbed contaminants. 

The number of steps is usually set to correspond with one complete scan so 

that a fresh surface is prepared for each scan. 

DAC Test Program 

The DAC program is a Pascal program that allows the user to test the 

D/A board and open the ion beam shutter. It is set up to prompt the user for 

the DAC channel they want to activate and then allows the user to set the 

channel to 0 - 5 volts. This is used commonly to insure that the ion beam 

shutter is receiving 5 volts and is open at the start of the day. 

BASIC Program 

The BASIC section shunts the user to the BASIC directory and allows 

the user to directly run any of the various BASIC characterization or 

alignment programs. The two most common alignment programs used to 
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align the laser into the fiber optic are ccount.bas and detpos.bas. The 

ccount.bas program is a looping program that is used to optimize the laser 

intensity into the fiber optic cable. The user sets the iteration time and the 

program interfaces the timer sealer and the photomultiplier tube to provide 

continuous counting of the photons hitting the photomultiplier. The user 

translates the laser into the fiber optic cable and maximizes the signal 

displayed on the computer screen. To end the program the user hits the 

standard BASIC escape keys of control C. The detpos.bas is a subroutine that 

controls the compumotor used to rotate the detector around the sample. The 

user specifies the detector position and the program moves the detector to 

that position. This is used to verify operation of the compumotor before 

running. Any other subprograms used in the other master programs can be 

tested here also, making the debugging of the programs easier. 

All the programs used to collect data for this thesis are collected in 

Appendix A. These programs are useful only with an experimental setup 

similar to the Watts lab, but are included so that the latest versions and 

changes may be collected in one location. 

Procedures 

To run an angular scan sputtering experiment, the following 

procedure needs to be followed. The Argon Ion laser must be turned on for 2 

- 3 hours before the laser reaches optimum stability The electronic control 

unit for the Dye laser must also be turned on at this time. The control unit, 

which supplies power to the reference leg heater on the Dye laser, takes at 

least 30 minutes to stabilize. 
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While the laser system is warming up, the sample surface can be 

checked for cleanliness and the ion beam started. The sample is centered in 

front on the Auger Spectrometer using the VG sample manipulator. The 

center position has been recorded on a 3x5 card that has been taped to the VG 

manipulator. The recorded position is used as the standard when taking 

Auger scans. The first Auger scan is recorded and examined to determine 

surface cleanliness. Zr, C, N, and O peaks are usually observed. If a new 

sample is not used, flash heating the sample to 800 °C is usually sufficient to 

clean the sample. After a four minute sample cooling period, a second Auger 

scan is recorded to verify the presence of a clean surface. The four minute 

waiting period is necessary to reduce the number of background infrared 

photons that would swamp the photomultiplier signal. If peaks other than 

Zr are present, a combination of flash heating and /or sputter cleaning is 

necessary to clean the surface. 

Once a clean surface is present as determined by Auger, the Auger is 

turned off and the sample is positioned to the center of the chamber. The 

sample is rotated to determine the angle of incidence of the ion beam 

impacting the surface. The ion beam enters the chamber at 135° as measured 

from the zero point of the detector. Setting the VG sample manipulator at 

269° will produce a 45° incident beam on the sample. 

After positioning the sample, the DAC program is run and channel 2 

set to 5 volts to open the ion beam shutter. The ion beam is started and the 

separation valve between the ion beam chamber and the UHV chamber is 

opened. The ion beam current is measured on the sample using an 

electrometer and the various ion optics elements adjusted to maximize the 

current on the sample. The ion beam is allowed to bombard the sample 

surface as the lasers finish warming up. The ion beam needs approximately 



67 

30 minutes of continuous operation to stabilize so it will not migrate during 

an experiment. 

Once the lasers and ion beam have achieved stable operation, the laser 

is tuned to the frequency of interest. The laser is blocked, ion chamber valve 

closed, and ccount BASIC program is run to measure the background counts 

in the chamber. These should be between 5-8 counts/sec. The laser is then 

unblocked and coupled into the fiber optic cable using two steering mirrors 

and two three-way translation stages that hold the fiber optic and a 1 cm focal 

length lens. The scattered laser light is monitored in the chamber and the 

mirrors and translation stages adjusted to maximize this signal. This occurs 

when the maximum light is being transmitted by the fiber optic cable. 

The laser is placed in remote operation, the ion chamber valve opened, 

and the ion current measured on the sample is maximized. The angular scan 

program is then run entering the appropriate parameters for the experiment. 

The sample is flashed to 800 °C to clean the surface, cooled for four minutes, 

and the scan started. The program pauses at a user defined time and the 

sample is again flashed to 800 °C and cooled for four minutes. After 

completing all scans, the sample is raised and centered in front of the Auger 

and another scan taken. The sample is flashed to 800 °C and cooled for four 

minutes and the final auger scan is taken to verify a clean surface. 



Chapter 3. Results and Discussion 

Laser Power Saturation Determination 

The initial set of experiments consisted of characterization 

experiments to verify that the experimental apparatus was operating 

correctly. The first series of experiments conducted were frequency scans to 

determine the optimum laser power needed to saturate a transition. An 

Argon ion beam at 45° incidence was used as the sputter source to provide 

200 nA of current on the zirconium foil sample. The laser was set to the 

ground state frequency of zirconium, 16786.978 cm , and a variable thickness 

neutral density filter pack was inserted to modulate the laser power input 

into the fiber optic cable. The LIF detector was rotated to 45° and five scans 

were measured. These five scans were averaged to give the curves in Figure 

25. 
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Figure 25. Ar ground state frequency curves 

The peak of the scan was located and a five point average made to determine 

the maximum signal point. Several experiments were completed varying the 

laser power by changing the thickness of the neutral density filter between 

experiments. The maximum signal vs. laser power is plotted in Figure 26. It 

can be seen that the signal reaches a plateau around 150 mw in power; thus 

all experiments were conducted using laser powers in excess of this 150 mw. 
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Figure 26. Power saturation curve. 

Ar  Ground State Sputtering 

Several changes were made to the instrumentation since Whitaker and 

Li completed their series of experiments on noble gas ions (see Experimental). 

Ar ion sputtering experiments were reaccomplished to insure that the results 

would correspond to previous measurements. A 1.9 keV ion beam provided 

500 nA of current as measured on the sample. 160 mW at 16786.978 cm   was 
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used to probe the F2 -» Fx transition. A one second integration time and a 

one degree angular resolution was chosen. Five scans were recorded at 15°, 

30 ,45 , 60 ,65 , 70 , and 75 as measured from surface normal. These five 

scans were averaged and plotted together in Figure 27. 
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Figure 27. Ar sputtering on Zr (raw data) 
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These curves were normalized and compared to normalized Ar data taken 

by Whitaker and Li.   The shape of the curves was consistent between the two 

experiments, indicating that no new experimental artifacts had been 

introduced with the changes to the apparatus. 
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Three basic parameters in the data can be evaluated: 1) the sputtering 

intensity at various incident ion angles, 2) the peak position of the sputtering 

distribution, and 3) the shape of the distribution curve. The latter two 

parameters can be further compared to predictions using Roosandaal 

Sanders Theory. From the curves in Figure 27, it can be seen that the 

sputtering yield using an Ar beam reaches a maximum for a 65° incident ion 

beam. This result was obtained using similar input conditions and with all 

data recorded in one day, thus eliminating day to day variability in laser 

power and incident ion beam conditions. 

Normalized Shape vs incident ion angle 

Normalization of the sputtering intensity data was necessary before 

the data could be used to analyze the peak position of the distribution and the 

shape of the yield curve. All the curves in Figure 27 show evidence of a 

broad plateau occurring at their maxima. The normalization factor was 

determined by finding the center of the plateau in each curve and calculating 

a five point average at this point. The data in each curve were then divided 

by this normalization factor to form the curves in Figure 28. 
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Figure 28. Normalized Ar sputtering curves. 

Examining the normalized curves in Figure 28, two observations can be 

made: 1) all the curves show approximately the same distribution pattern 

from the peak position to the ion beam side of the graph (negative angle), and 

2) the distribution becomes narrower as the incident ion beam moves from 

near normal directions, 15 , to glazing incidences, 75 . In other words, all 

curves show the same back sputtering behavior but less forward sputtering as 

the incident ion beam moves toward the surface. 

Roosandaal Sanders fit to raw data 

Following the approach of Whitaker and Li, the curves in Figure 27 

were modeled using a nonlinear least squares fit to the modified Roosandaal 
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Sanders equation using B(E), n, and U as fitting parameters. Table 5 lists the 
2 

fitting parameters and a % term indicating the goodness of the fit to the RS 

2 
equation. As for most applications, a smaller % term is indicative of a better 

fit. 

Table 5. Fitting parameters using Roosandaal-Sanders equation. 

Angle B(E) n U (X2)/N-m 

15 16,595 1.55 9.10 0.6330 

30 17,032 1.49 9.42 1.4015 

45 18,061 1.52 8.10 2.0116 

60 15,954 1.53 5.02 3.2590 

65 15,525 1.49 2.94 7.8948 

70 13,889 1.47 1.78 5.4242 

75 10,374 1.42 0.45 2.6606 

The B(E) term is an amplitude correction factor and will not be examined in 

detail. The exponent, n, to the cosine term is approximately 1.5 in all fits. 

45,46 47 48 
This is consistent with the work of other researchers     ' '   as well as the data 

collected by Whitaker and Li. The fitting parameter, U, decreases 

continuously (neglecting the 15 curve) as the incident ion beam moves 

toward the surface. The 15 curve is neglected because it is not apparent that 

there is enough data to fully determine that the peak has been reached.   In 

the original Roosandaal Sanders equation, U corresponded to the surface 

binding energy, which is usually approximated using the sublimation energy 
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of the target (6.3 eV for zirconium). In this approach, using U as a fitting 

parameter clearly removes any relationship to the sublimation energy of the 

target. 
2 

The % term in Table 5 indicates that the modified RS equation is 

inadequate at fitting the raw data as the incident ion moves toward the 

surface. Curves comparing the raw data to the modified Roosandaal Sanders 

equation are presented in Figure 29-35, along with a compilation of the RS 

curves in Figure 36. 
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Figure 29. Roosandaal Sanders fit, 1.9 kev Ar at 15 angle of incidence. 
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Figure 30. Roosandaal Sanders fit, 1.9 kev Ar at 30° angle of incidence. 
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Figure 31. Roosandaal Sanders fit, 1.9 kev Ar at 45° angle of incidence. 
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Figure 32. Roosandaal Sanders fit, 1.9 kev Ar at 60° angle of incidence. 
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Figure 33. Roosandaal Sanders fit 1.9 kev Ar at 65° angle of incidence. 



78 

ü 
0) 
Cfl 

3 
O 
U 

(40) 

 RS70 

D    obs 

(20) 0 20 40 60 

sputter angle from surface normal 

Figure 34. Roosandaal Sanders fit 1.9 kev Ar at 70° angle of incidence. 
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Figure 35. Roosandaal Sanders fit 1.9 kev Ar at 75° angle of incidence. 
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Figure 36. Roosandaal Sanders fits, 15 - 75° compilation. 

Examining the curves in Figure 29-35, it is apparent that the modified 

Roosandaal-Sanders equation does not fit the data as the incident ion beam 

moves toward the surface. The modified Roosandaal Sanders equation was 

reexamined to determine the cause of the discrepancy in the fits. 
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Roosandaal Sanders Discrepancies - Peak Position 

The first parameter investigated was the peak position of the 

distributions, which was determined: 1) by the center of the plateau 

indicated using the normalization procedure to produce the curves in Figure 

28, and 2) by fitting the raw data in Figure 27 to the modified Roosandaal 

Sanders Equation. The results of this analysis are collected in Table 6. 

Table 6. Peak position of Zr sputtered by Ar\ 

Angle Peak Position 

Normal         RS 

15 27 21 

30 28 24 

45 27 21 

60 26 16 

65 24 12 

70 21 9 

75 18 5 

The data in Table 6 reveal that both procedures show a trend in the 

peak position of the distribution moving toward surface normal as the 

incident ion beam moves away from surface normal. The raw experimental 

data reveal a much slower regression to surface normal of the peak position 

than the RS data indicate; thus^ it is not evident that as the ion beam moves 

toward the surface that the peak position will ever migrate toward surface 
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normal as drastically as indicated by the RS data. The behavior indicated by 

the RS fits is clearly not supported by the experimental data. 

Roosandaal Sanders variation of U and incident ion angle 

The input parameters to the modified Roosandaal Sanders equation 

were varied and plotted to determine what affect varying U and/or the 

incident ion beam angle would have on the peak position of the distribution. 

Using B(E) = 10,000, n = 1.5, incident ion beam = 30 , and varying U from 10 

to .1 produces the curves in Figure 37. Keeping U constant and varying the 

incident ion beam angle produces the curves in Figure 38. 
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Figure 37. Roosandaal Sanders curves, varying U. 
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Figure 38. Roosandaal Sanders curves, varying incident ion angle. 

Figure 37 provides visual confirmation that variation of the fitting parameter 

U causes a drastic shift in the peak position of the sputtering distribution. 

This shift is less dramatic in Figure 38, but varying the incidence angle also 

causes a slight shift in the peak position. The peak position versus the 

various fitting parameters is collected in Table 7. 

Table 7. Peak position versus U and incident ion angle. 

Parameter 10U 5U 1U .1U 30° 45° 60° 75° 

Peak Position 25 15 5 1 25 24 22 20 

The data in Table 7 indicate that the large shift toward surface normal 

produced by the Roosandaal Sanders fit is an artifact of the Roosandaal 

Sanders equation. The large variation in the input parameter U causes an 
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artificially large shift in the peak distribution. Clearly, variation of U through 

two orders of magnitude is unrealistic and results in behavior not evident in 

experiments. 

Roosandaal Sanders fits to forward sputtering 

The raw data was reexamined to determine if another fitting routine 

could provide reasonable fits using physically meaningful parameters. 

Returning to the observations of the normalized curves in Figure 28, the data 

suggest two different sputtering behaviors. The back sputtering behavior 

appears to be independent of incidence angle whereas the forward sputtering 

shows a slight dependence on incident angle. There is no reason that the 

same sputtering mechanism is responsible for both behaviors, thus the 

modified Roosandaal Sanders equation was used to fit each part of the curve 

independently to see what trends would become evident. The peak position 

was chosen by the normalization procedure, then both back-sputtered and 

forward sputtered portions of the curve were fit using the modified 

Roosandaal Sanders equation. The parameters B(E), n, and U were allowed 

to vary independently in each portion of the curve. The fitting parameters 
2 

and the x term are collected in Table 8. The curves produced using these 

parameters are plotted in Figure 39-45. 
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Table 8. Roosandaal Sanders fits to back and forward sputtering. 

Angle Forward Backward 2 
X 

B(E) n U B(E)           n             U 

15 19,239 1.67 12.22 0.8685 

30 18,257 1.56 11.79 12,886 0.68 4.11 0.9158 

45 19,492 1.64 13.29 14,855 0.67 3.57 1.0090 

60 17,494 1.80 13.95 14,452 0.57 2.61 0.7458 

65 17,199 1.97 17.49 14,539 0.54 2.44 0.8768 

70 14,941 2.07 18.77 13,280 0.60 1.89 0.6224 

75 11,285 2.31 19.18 10,376 0.42 2.33 0.1981 
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Figure 39. Modified RS fit, Ar+ at 30° angle of incidence. 
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Figure 40. Modified RS fit, Ar+ at 45° angle of incidence. 
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Figure 41. Modified RS fit, Ar+ at 60° angle of incidence. 
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Figure 42. Modified RS fit, Ar at 65° angle of incidence. 
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Figure 43. Modified RS fit, Ar at 70° angle of incidence. 
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Figure 44. Modified RS fit, Ar at 75° angle of incidence. 
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The relatively small % terms in Table 8 and the curves in Figure 39-45 attest 

to the success of this fitting procedure. Whether the fitting parameters are 

physically meaningful will be addressed in the paragraphs below. 

Analyzing the forward and backward sputtering independently shows 

some interesting trends. In the forward sputtering case, the parameter U 

increases steadily as the incident ion moves from near surface normal toward 

the surface. U varies from approximately 2 to 3 times the sublimation energy 
49 

of zirconium. Garrison   et. al. addressed the question of how much energy 

would be required to remove an atom from a surface. Jackson '   found that 

the energy loss using a pairwise additive potential approximation is 30% to 

40% larger than the heat of sublimation. Using Jackson's results and 
52 

experimental evidence, Garrison   et. al. argue that the energy requirement is 

much greater than the heat of sublimation. They use a model of a diatomic 

molecule with bond strength, De. The binding energy of each atom is then 

De/2, and if one atom of this molecule is clamped tightly, twice the binding 

energy is required to remove the other atom. This model breaks down upon 

closer examination as zero energy would then be required to remove the 

second atom. Regardless, Garrison et. al. argue that U should fall between one 

and two times the binding energy. 

Whitaker fit Ar data at 30 ,45 , and 60 to the modified Roosandaal 

Sanders equation and reported a corresponding 300% change in the value of 

U, similar to our results in Table 5. This large variation could not be 

explained using Garrison's model. Whitaker explains the discrepancy by 

invoking expansion of the lattice spacing of the top layer of surface atoms. 

He argues that the atoms near the surface are set into motion by the 



89 

collisional cascade and that the average lattice spacing can change 

significantly before an atom escapes the attractive forces of the surface. 

Therefore, the average lattice spacing at the time of ejection will be dependent 

on the bombardment conditions. A larger lattice spacing will decrease the 

interaction between an atom leaving the surface at a large angle to surface 

normal and its nearest neighbor, increasing the probability of ejection in these 

high angle directions. This behavior is essentially the same seen by 

increasing the surface binding energy, U.   Additionally, a larger lattice 

spacing increases the probability of deeper atoms being sputtered. In 
7 

computer simulations, the sputtering distributions of second and third layer 

atoms has been shown to be highly over cosine due the increased number of 

collisions at high angles of incidence. 

Whitaker's model is consistent with the forward sputtering behavior 

observed in the Ar data from 30 to 75 . As the incident ion angle moves 

toward the surface, the interaction with the surface increases. This causes a 

steady increase in the lattice spacing of the top layer, simulating an increase 

in the surface binding energy. This increase in the lattice spacing also 

increases the contribution of second and third layer atoms that can be 

sputtered. As this contribution increases, the over cosine behavior should 

increase. This is supported by the increase in the exponent n in Table 8. 

Roosandaal Sanders fitting to backward sputtering 

The backward sputtering behavior cannot be explained using the same 

model used to describe forward sputtering behavior. The value of U 

decreases as the incident ion moves toward the surface and the value of n is 
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definitely less than 1, showing evidence of undercosine behavior. There are 

two possible mechanisms for the back sputtered behavior. If the incident ion 

penetrates deeply into the target, the momentum distribution should be 

completely randomized and the collision cascades produced should form an 

isotropic cosine distribution peaking at surface normal. This is clearly not the 

behavior seen in our experiments. 

The second possible mechanism is caused by back scattering of the 

incident ion by the target atoms. In this scenario, the incident ion heads 

toward the surface, initiating collision cascades on its way to exiting the 

surface. The ion will preferentially exit in the surface normal position similar 

to the behavior of the forward sputtered target atoms.   As the ion exits, it can 

interact with other target atoms, consequently ejecting them at high angles of 

incidence. This phenomenon would produce a sputtering distribution that 

would be distinctly undercosine in behavior. This is exactly the behavior 

observed in our experiments. The data in Table 8 show undercosine behavior 

in fits at all of the angles. The trend showing a decrease in the parameter U as 

the incident angle increases can also be explained with this model. As the 

incident angle increases, the depth of penetration into the target decreases. 

The back scattered ion would then have a smaller distance to travel before 

exiting the surface, that is, its interaction time with the surface layers would 

be less. Thus, as the interaction with the surface decreases, the parameter U, 

which is the only parameter incorporating surface effects, also decreases. 
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Variation in n and U allowed by fitting routine 

The values of n and U should not be considered absolutes. The 

parameters reported in Table 8 are for the best fit conditions, but several 

combinations would give reasonable fits to the data as evidenced Figure 46. 
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Figure 46. Chi vs. n for 70 Ar on Zr. 

Choosing an arbitrary value of 50 for a maximum chi squared value allows a 

variety of n's. Since the n and U parameters are linked, they cannot be 

examined independently. They can vary between 0.52 <n< 0.70,1.38 <U< 

2.22 and still give reasonable fits to the modified RS equation. The n 

parameter consistently shows under cosine behavior at all angles and the U 

parameter shows a decreasing range as the ion incident angle increases, so 
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the variability in the n and U parameters does not affect the conclusions 

drawn from the fitting routine. 

The above fitting procedure of treating independently the forward and 
+ + 

backward sputtering was applied to Ne and Xe ground and first excited 

state data available from Whitaker. The results are presented in Table 9. The 

Ne ground state results are consistent with the Ar data described above. 

The first excited state results indicate a much sharper peaking (i.e., larger 

value of n) than seen in the ground state Ne results. This sharper peaking 

occurs in both the forward and backward sputtering cases, and can be 

explained by the relaxation of the excited state species upon interaction with 

the surface along angles close to the surface. This interaction would reduce 

the near surface population of sputtered excited state atoms, resulting in a 

more pronounced peaking toward surface normal in the data. The values of 

U also are larger in the first excited state case than in the ground state case. 

As we have postulated U to be a surface interaction term, the larger values of 

U are consistent with the picture of an increased interaction with the surface. 

However, the larger values of n and U could be an artifact of the fitting 

routine because their is no mechanism in the RS model for the removal of 

sputtered atoms from the distribution due to the relaxation of the excited 

state species by the surface. The smaller yield of excited state species along 

trajectories close to the surface is compensated(wrongly) in the model as an 

increase in the n and U parameters. 



Table 9. Modified RS fit to Ne+ and Xe+. 
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Ne,gnd 

Angle B(E) 

Forward 

n U B(E) 

Backward 

n U 2 
X 

30 1042 1.76 6.23 0.296 

45 816 1.57 10.39 749 -0.20 2.24 0.192 

60 1212 2.05 15.32 938 0.80 1.61 0.227 

75 890 2.21 16.77 821 0.21 4.86 0.134 

Ne,lx Forward Backward 

30 1169 1.94 7.63 0.369 

45 868 1.94 23.62 860 1.36 4.71 0.209 

60 1675 2.52 25.37 1287 0.99 4.23 0.312 

75 1119 2.97 45.97 1040 0.91 3.98 0.486 

Xe, gnd Forward Backward 

30 3376 1.76 16.57 0.470 

45 2620 1.82 49.58 2254 -1.36 11.81 0.533 

60 4900 2.01 31.81 4112 0.27 15.50 0.202 

75 1876 1.69 15.27 1912 -1.68 29.18 0.268 

Xe,lx Forward Backward 

30 2771 1.97 21.16 0.266 

45 1919 2.09 119.29 1773 -0.16 26.73 0.358 

60 3590 2.74 76.79 2520 0.24 23.31 0.277 

75 1977 1.89 5.24 1708 -1.30 37.27 0.347 
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The Xe ground state behavior shows a much sharper peaking and 

much larger U terms than in either the Ar or Ne data. This result can be 

explained by the larger mass and size of the Xe ions, that is, by the fact that 

they will not penetrate as far into the target. Thus, there will be a greater 

interaction with the surface, which is represented by the increase in the U 

terms. The larger values of U are representative of a larger lattice spacing, so 

the n terms should also increase as the sputtered atoms preferentially eject in 

the surface normal direction. The forward sputtering behavior is consistent 

with this picture. The back sputtered behavior shows extreme undercosine 

behavior. The back scattered incident ion will be very near the surface due to 

the limited penetration of the ion. The top lattice spacing will have expanded 

considerably due to the ion surface interaction as the ion penetrated the 

target. On its exit, the ion will have a much more open lattice to penetrate 

and will exit preferentially in the normal direction. The predominant 

collisions with surface Zr atoms will occur at glancing angles with the Zr 

atoms ejecting close to the surface. This behavior will produce the severe 

undercosine behavior evident in the data. The excited state data show the 

same increase in the peaking of the distribution toward surface normal as in 

the Ne data. The relaxation of the near surface excited state atoms by 

interaction with the surface is consistent with these data. The larger U terms 

are consistent with the increased size/mass of the incident ion resulting in 

greater surface-ion interaction. 



Chapter 4. Nitrogen Sputtering on Zirconium 

Nitrogen absorbates on Zirconium 

When using noble gas ion sources, the sputtering intensity does not 

modulate over time as long as a clean surface is maintained. The noble gas 

ions do not appear to stick to the surface and /or modulate the sputtering 

signal measured. Over many hours of experiments, the signal intensity does 

decrease, but this behavior is attributed to the contamination of the surface by 

02, C02, and N2 from the residual gas atmosphere of the sputtering chamber. 

These observations are verified by Auger experiments indicating an increase 

in the C, O, and N peaks after long hours of experimentation. As noted 

earlier, this effect was minimized by periodically flash heating the sample to 

800° C to eliminate the surface contaminants. 

Using nitrogen as the sputter source caused some concern about signal 

degradation due to adsorbed nitrogen on the surface. This issue was 

addressed by conducting coverage experiments on zirconium. Nitrogen 

sputtering on zirconium was accomplished holding the sputtering angle 

constant and measuring the sputtered zirconium intensity at a fixed angle 

over a long period of time. A graph of the results obtained is shown in Figure 

47. 



96 

4500 
4000 
3500 

g 3000 
•§ 2500 
c 2000 
O 1500 

1000 
500 

0 

**W*.. 

10 

_l ^_ 

20      30 

minutes 

40 50 

o . 
Figure 47. N2  sputtering on Zirconium at 60 incidence 

The sputtered intensity holds relatively constant for approximately 20 

minutes and then steadily decreases. Thus all scans were timed and any that 

exceeded 20 minutes in duration were eliminated from analysis. The sample 

was flash heated between scans and scans taken in both forward and 

backward directions to further minimize any effect absorbed species could 

have on the sputtering distribution. 

N2 ground state sputtering on Zirconium 

Ground state scans were accomplished at 30 ,45 ,60 , and 75 using a 

2 degree resolution to insure all scans were completed in under 20 minutes. 

A minimum of 15 scans were recorded and averaged at each angle. These 

scans were recorded over several days. The laser input power and ion current 

measured on the sample were recorded to insure similar sputter conditions 
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were maintained. The raw data are plotted in Figure 48.   The sputtering 

intensity reaches a maximum for a 60° degree incident ion beam. The curves 

in Figure 48 were normalized by finding the middle of each plateau and 

calculating a 3 pt (5 deg) average at this point to use as a normalization factor. 

The plateau widths and peak positions are present in Table 10 and the 

normalized curves are presented in Figure 49. 
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Figure 48. N2  ground state sputtering on Zr (raw data). 
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Table 10. Plateau width and peak position for N,  on Zr. 

Angle 30 45 60 75 

Plateau Width 20 32 10 12 

Peak 15 24 30 24 
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Figure 49. Normalized N2 sputtering curves. 
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Examining the data in Table 10 and Figure 49, several observations can be 

made. The peak plateau is broadest at incident angles nearest surface normal, 

then narrows significantly as the incident angle moves toward the surface. 

The peak position moves away from surface normal as the incident angle 

increases to 60 and then returns at 75°. Additionally, a slight narrowing of 

the overall shape of the distribution is observed as the incident angle moves 

toward the surface. 

The peaks in Figure 48 were fit using the modified Roosandaal Sanders • 

equation using the same method as for Ar . The curves are shown in Figure 

50-53 and the fitting parameters are collected in Table 11. 
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Figure 50. N2  sputtering on Zr at 30 incident. 
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Figure 51. N2 sputtering on Zr at 45 incident. 
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Figure 52. N2 sputtering on Zr at 60 incident. 
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Figure 53. N2  sputtering on Zr at 75° incident. 

Table 11. Roosandaal Sanders best fit parameters for N2 

Angle 

B(E) 

forward 

n U B(E) 

Backward 

n U Chi 

30 3325 1.17 3.47 1.21 

45 4566 1.31 9.02 3603 0.21 2.58 1.16 

60 5359 1.92 32.04 4142 0.36 7.06 1.44 

75 2524 3.21 76.88 2103 0.36 3.71 1.99 

Examining the data in Figure 50-53 and the data in Table 11, similar patterns 

to the Ne and Ar data emerge. The forward sputtering behavior shows an 

increasing interaction (larger U) with the surface as well as a sharper peaking 
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(increasing n) as the incident ion moves toward the surface. The back 

sputtering behavior shows consistent undercosine behavior and smaller 

surface interaction terms. The chi terms are larger than the Ar+ data due to 

greater scatter in the data. The increased scatter in the data is caused by the 

lower sputtering intensity due to the smaller mass of N2
+. The U terms for 

N2 are generally larger in magnitude than for Ne at comparable angles. 

This may result from the N2 ion splitting into two N ions upon impact with 

the surface. The two N ions distribute the energy to the target more 

efficiently than a single Ne  atom causing a corresponding larger value of U. 

The data in Figure 49 show a narrowing of the sputtering distribution 

of the 60 incident angle. This behavior is also evident in the increase in the n 

term in the back sputtering fit to the modified Roosandaal Sanders curves. A 

second series of experiments were conducted at 55 ,60 , and 65 to determine 

if this was a reproducible phenomena. The data were collected under similar 

conditions as the data in Figure 49 except using an ion current of 200 nA as 

measured on the sample as opposed to the 380 nA used previously. The raw 

data are plotted in Figure 54. The normalized data using our standard 

procedure is plotted in Figure 55 along with the normalized data from the 

first series of runs at 45 and 60 . 
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Figure 54. N2 sputtering on Zr (raw data). 
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Figure 55. N2 sputtering on Zr (normalized data). 
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As can be seen in Figure 55, there is a less dramatic, but still noticeable 

narrowing of the 60   curve obtained from the second series of scans. The 

narrowing of the 60° peak is within the resolution of the scans and is 

reproducible in all the scans. At this time, we cannot suggest a consistent 

mechanism to explain this preferential narrowing of the back sputtered 

behavior of the 60 sputtering peak. The best fit parameters to the modified 

Roosandaal Sanders equation are shown in Table 12. 

Table 12. Roosandaal Sanders fits to curves in Figure 54. 

Angle 

B(E) 

forward 

n U B(E) 

Backward 

n U Chi 

55 2981 1.69 16.19 2510 0.83 2.01 1.39 

60 2504 1.57 22.11 2235 0.92 6.05 0.72 

65 2626 1.89 19.88 2230 0.93 2.50 0.53 

The trends in the values of U and n for the second series of scans are 

consistent with those seen for the first series of scans. The backward 

sputtering is more peaked than seen in the earlier data. The data in Table 12 

must not be taken as absolute but indicative of trends. At all three angles, 

reasonable fits to the backward sputtering could be obtained with 0.7<n<1.2, 

1.5<U<7.0. 

,0     ,_0     _„0 
First excited state scans of N2 were also accomplished at 30 ,45 ,60 , 

and 75 using a 2 degree resolution to insure all scans were completed in 
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under 20 minutes. A minimum of 15 scans were recorded and averaged at 

each angle. These scans were recorded over several days. The laser input 

power and ion current measured on the sample were recorded to insure 

similar sputter conditions were maintained. The raw data are plotted in 

Figure 56. The sputtering intensity reaches a maximum for a 60 degree 

incident ion beam. The curves in Figure 56 were normalized by finding the 

middle of each plateau and calculating a 3 pt (5 deg) average at this point to 

use as a normalization factor. The plateau widths and peak positions are 

presented in Table 13 and the normalized curves are presented in Figure 57. 
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Figure 56. N2  lx sputtering on Zr. 
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Table 13. Peak width and Position for N2  lx on Zr. 

Angle 30 45 60 75 

Plateau Width 20 30 22 22 

Peak 17 21 20 21 
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Figure 57. N2   lx normalized yield. 

The data in Figure 56 and Figure 57 show similar behavior to the 

ground state data on N2 . The peak widths are broader at the higher incident 

angles than in the ground state and the peak position stays relatively 

constant. The peaks in Figure 56 were fit with the modified RS equation and 
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are presented in Figure 58-61. The fitting parameters are collected in Table 

14. 
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+ lx modified RS fit at 30° incidence. 
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Figure 59. N,  lx modified RS fit at 45° incidence. 
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Table 14. Modified RS best fit parameters for N,  lx. 

Angle 

B(E) 

Forward 

n U B(E) 

Backward 

n U Chi 

30 2934 1.45 2.62 0.82 

45 4673 1.54 9.97 4335 2.26 6.22 0.89 

60 5059 2.02 13.23 4596 0.88 8.76 1.06 

75 2819 3.61 88.14 2281 1.18 0.21 1.34 

The data in Table 13 and Table 14 support the mechanism of 

preferential sputtering in the normal direction due to quenching of the near 

surface excited state atoms by interactions with the surface. The back 

sputtering behavior at 45 shows a much larger n term than expected. This 

term is calculated with the fewest data points for the backward sputtering 

cases and thus can have large errors. The terms for the 60 and 75 angles use 

significantly more data and are considered more representative of the 

behavior occurring. Two nearly distinct curves can be seen in the 75 fit. The 

N2 molecule breaks in two upon impacting the surface and each resulting N 

atom carries a portion of the incident ion energy. These atoms cannot 

transfer this energy to the surface atoms as efficiently due to their low mass. 

Thus the majority of sputtered atoms will exit with lower energy than in the 

case of Ne, Ar, or Xe. The sputtered atoms traveling close to the surface will 

have more time to interact with the surface and be quenched. This 

phenomenon could cause the unexpectedly pronounced peaking of the 

distribution. 
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N  sputtering on Zirconium 

Ground state scans using N+ were accomplished at 30°, 45°, 60°, and 

75 using a 2 degree resolution to insure all scans were completed in under 20 

minutes. A minimum of 30 scans were recorded and averaged at each angle. 

These scans were recorded over several days and the laser input power and 

ion current measured on the sample were recorded to insure similar sputter 

conditions were maintained. The results are plotted in Figure 62. As for N2
+, 

the sputtering intensity reaches a maximum for a 60° degree incident ion 

beam. The curves in Figure 62 were normalized by finding the middle of 

each plateau and calculating a 3 pt (5 deg) average at this point to use as a 

normalization factor. The peak positions are present in Table 15 and the 

normalized curves are presented in Figure 63. 

Figure 62. N  ground state sputtering of Zr (raw data). 
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Figure 63. N  normalized yield. 

Table 15. Peak positions of N 

Angle 30 45 60 75 

Peak 24 26 13 -6 

The data in Figure 63 show a narrowing in the forward sputtering yield as the 

incident ion moves toward the surface. A broad plateau is also evident on the 

75 incident ion where the back sputtering behavior appears to reach a 

constant. The 75 curve has the greatest interaction with the surface and the 

greatest scatter in the data in our experiments. The curves in Figure 62 were 

fit using the modified Roosandaal Sanders equation. The results are 

presented in Figure 64 - 67 and Table 16. 
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Figure 64. Modified RS fit to N  on Zr at 30° incidence. 
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Table 16. Modified RS best fit parameters to N+. 

Angle 

B(E) 

forward 

n U B(E) 

Backward 

n U Chi 

30 739 1.12 1.88 0.66 

45 595 1.27 2.26 512 .1 .439 1.22 

60 937 1.76 3.23 834 2.43 0.950 1.28 

75 579 1.94 3.40 463 -0.023 .001 1.70 

The forward scattering behavior trend is similar to the forward 

sputtering behavior of the other incident ions we have studied. The 

progression in n as the incident ion moves toward the surface is consistent. 

The progression in U is also consistent although it is very small. N+ is a very- 

small ion and is only 15% of the mass of zirconium. The N ion can penetrate 

deeper into the solid before impacting with the target atoms and as such the 

surface interaction term should be smaller. 

The backward sputtering behavior has the most scatter and is hard to 

make any determinations. There seems to be the same undercosine behavior 

seen with other species and the surface interaction term is extremely small. A 

possible mechanism for this behavior is that the back scattered incident ion is 

small enough to exit the lattice without interacting substantially with the 

target, that is, without producing any more collisions. As the incident ion 

moves toward the surface, the back scattered ion's trajectory also moves 

toward the surface. The back scattered ion travels subsurface parallel to the 

surface initiating sputtering from the second and third layers. These atoms 
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will preferentially eject in the surface normal direction and cause the extreme 

flattening of the curve at 75 . 



Chapter 5. Summary and conclusions 

An ion optics system utilizing a wein filter velocity selector has been 

modeled and characterized for use as a ion source for an instrument to 

measure high resolution angular distributions of sputtered neutral atoms. 

The ion source provides the capability to use mixed species as sputter sources 

and still obtain a well resolved single component ion beam for sputtering. 

The ion system was tested using N2 and sputtering behavior of diatomic N2 

as well as monatomic N has been measured. The capability to explore 

sputtering behavior using ions other than noble gas ions is now available. 

Extensive modifications to the instrument were made including 

increasing the sample size, modeling and optimizing the ion source 

conditions and ion flux on the sample, rewriting the control programs to 

incorporate annealing cycles, and changing the sample annealing conditions. 

Ar data was reaccomplished to verify consistency with previous data taken 

in the Watts' lab. No new experimental artifacts or discrepancies were 

apparent. 

A modified Roosandaal Sanders model was used to analyze the 

sputter data. The model breaks down when high angle of incidence ion 

beams are used, reproducing neither the peak nor shape of the sputtering 

distribution seen in experiment. Using the surface binding energy U and the 

cosine exponent n as fitting parameters removes any relation to physical 

reality. 
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Using n and U as fitting parameters, extensive analysis using the 

modified Roosandaal Sanders equation was accomplished on N2 , Ar , Ne , 

and Xe . Assuming the back sputtered and forward sputtered atoms occur 

from the top layers of the target and assuming the back sputtered and 

forward sputtered atoms are caused by different mechanisms; the back and 

forward sputtering atoms were fit independently using the peak position in 

the distribution as an arbitrary dividing point. Following this procedure and 

allowing n and U to vary independently in both fits reveals some interesting 

trends. Treating U as a measure of the surface interaction energy, U increases 

as the incident ion angle increases or the mass increases for forward 

sputtering. The value of n remains between 1 and 3, consistent with the work 

of other researchers. The value of n also increases for the forward sputtering 

case as the incident ion angle moves toward the surface. The surface binding 

energy can be related to the average lattice spacing. If the top layer lattice 

spacing increases, the number of atoms preferentially sputtered in the surface 

normal direction increases. Thus, the increase in both n and U are consistent 

with the picture of an expanding surface lattice. 

Figure 68 and Figure 69 are plots of U and n versus the ion beam 

incidence angle for the forward sputtering case using the gases examined in 

this thesis. The general trend, of increasing values of U and n as the ion beam 

angle of incidence increases, is evident for all gases except Xe . Xe peaks in 

U and n at 45 . This can be explained by decreasing penetration of the ion as 

the angle of incidence increases. The Xe ion is being scattered from the top 

layers of the target. The N2 ion shows much larger increases in both U and n 

at the 75 angle. If the N2  ion breaks up into two N ions in the region of the 
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surface, twice the energy can be localized in those top layers. This would 

explain the larger values that are seen. The small values of U and n seen at all 

angles for the N ion can be attributed to the small mass/size of the ion. The 

ion penetrates deeply into the solid and is not efficient in transferring its 

energy to the target atoms. This causes a corresponding small sputter yield 

as well as small values of U and n. 
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Figure 68. U vs ion beam angle of incidence, forward sputtering case. 
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For the backward sputtering case, n is consistently less than 1 for the 

ground state and approximately 1 for the first excited state. This is consistent 

with a model in which the incident ion is back reflected toward the surface, 

preferentially exiting in the surface normal direction due to interactions with 

the target atoms. The target atoms will thus exit at angles close to the surface, 

resulting in a broad distribution with a distinctly under cosine appearance. If 

the sputtered atoms are in an excited state and exit at large angles with 

respect to the surface normal, they can be quenched by interaction with the 

surface and the distribution of the surviving atoms will become more peaked. 

This explains why the excited state distributions are consistently more peaked 

(larger n) than the ground state distributions. 

The value of U is consistently smaller for the back sputtered curves 

than the forward sputtering curves. If the predominant mechanism for the 

back sputtering behavior is caused by the back reflections of the incident ion, 
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there could be very little interaction with the surface. The ion will penetrate 

very shallowly before impacting with a target atom and returning to the 

surface. The ion can possibly sputter some surface atoms on its way out, but 

will still retain a large amount of its initial energy upon ejection. The surface 

interaction will be limited and so the U terms are consistently small. Figure 

70 and Figure 71 are plots of U and n versus the ion beam incidence angle for 

back sputtered atoms obtained for the gases examined in this thesis. There is 

more scatter in the data than in the forward sputtering case. Due to machine 

limitations, fewer data points can be recorded in the backward direction 

causing more variability in the fits. The behavior described above is 

essentially the same for all the gases used in this thesis. 
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Figure 71. n vs ion beam incidence angle, backward sputtering case. 

Aijun Li conducted molecular dynamic simulations of a Zr crystal. He 

found that the majority of the sputtering events occur in the top surface layers 

with over 96% of the sputtered atoms originating in the two top surface 

layers. Sputtering is truly a surface phenomena. The Roosandaal Sanders 

theory arbitrarily introduces a surface binding energy using a planer binding 

potential. This treats the surface interaction as a constant for all masses and 

ion incident angles. This treatment clearly underestimates the effect of the 

surface and does not reproduce experimental observations. Treating the 

surface binding energy as an adjustable parameter, and hypothesizing its 

function as a surface interaction term produces consistent behavior. The 

modified Roosandaal Sanders equation can be used in this framework to 

provide insight into the sputtering mechanisms occurring. The experimental 

data in this thesis can be explained in this manner and provide experimental 

verification of sputtering as a surface phenomena. Unfortunately, this 

method does not provide predictive capabilities. Improvements to the 
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analytical theory of sputtering should concentrate on how to improve the 

model of the surface as well as the ion-surface interaction. 

Future Work 

Experiments to probe the ion surface interaction can be accomplished 

using the current apparatus with some modifications. The instrument can 

currently record angular resolved sputtering data. Energy and angular 

resolved spectra are desired to determine if there is an energy difference 

between the spectrum of forward and backward sputtered atoms. A Doppler 

shift detector could be added to the detector assembly to provide the energy 

measurement. This modification would require a frequency scan to be 

accomplished at each angle, resulting in a prohibitively long experiment 

using the current single photon counting technique. The predominant source 

of background counts comes from scattered laser light. The dark counts and 

the background ion counts are relatively constant and an order of magnitude 

smaller. Changing the detection system to the current signal off the 

photomultiplier in conjunction with a lock in technique could provide a more 

reasonable experiment duration. The ion beam would be chopped and the 

chopping frequency used as the reference for the lock in detector. Changing 

to a lock-in technique would also provide the capability of elevated 

temperature sputtering as the thermal photons created will not affect this 

technique. 

The Auger spectrometer should also be replaced with a retractable 

LEED Auger system. The angular range of the instrument is currently limited 

by the Auger in one direction and by the ion beam in the other direction. 
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Using a retractable Auger system removes one of these limitations and the 

LEED capability will allow the examination of the surface as the sputtering 

process evolves. 

The above changes would provide expanded capability to explore the 

ion surface interaction occurring during sputtering. This is the weak link in 

the current analytical models of sputtering and more work should 

concentrate in this area. 
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BASIC Programs 
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ANGSCANP.BAS 

10   REM  ANGSCANP V1.0, (ROT&CNT) modified 8/13/90 to increase DELAY(3)   (TW) 

20   REM  Graphic boundaries and flag offset are set at 910-920   (TW) 

30  REM  modified 08/20/92: solenoid operation, waitdelay  (WM) 

40  REM 08/27/92: program structure   (WM) 

50  REM     10/07/93: program structure (PRS) 

60   REM  files needed    : hbasic.exe, basica.com, code.bas, camio.bas 

70   ' 

80 ' *** Find data segment above BASICA *** 

90 ' 

100 CLEAR: CLS ' Set all variables to "0" 

110 DEF SEG=0 ' Go to low memory to find BASICA loc. 

120 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511 

130 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA 

140 DEF SEG=CAMSEG 

150 ' 

160 ' *** Open COM channel to Apple Comp. *** 

170 ' 

180 OPEN "COM1:9600,N,8,1" AS #2 

190 MSG$="READ"+CHR$(13):GOSUB 4120 

200 ' 

210 ' *** Dimension of variables *** 

220 ' 

230 DIM.OWTBL%(32),MULTBL%(32),DAC0(3),DAC2(3),TDEL(3),SIG(3) 

240 DIM WVMTR#(3),D24%(2),LABEL$(3) 

250 DATA 4,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9,5,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9 

260 DATA 0,16,8,17,4,18,9,19,2,20,10,21,5,22,11,23,1,24,12,25,6,26,13,27 

270 DATA 3,28,14,29,7,30,15,31 

280 FOR 1=1 TO 32: READ OVFTBL%(I): NEXT   'Load in tables for conversion of 

290 FOR 1=1 TO 32: READ MULTBL%(I): NEXT   'time. 

300 ' 

310 ' *** Setting parameters *** 

320 ' 

330 PRINT"" 

340 PRINT "y minimum value for screen plot: ";:INPUT PMIN 

350 PRINT "y maximum value for screen plot: ";:INPUT PMAX 

360 PFAC=(PMAX-PMIN) 

370 XM=600: YM=400: YM2=YM/2 

380 ' 
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390 ' *** Program header *** 

400 ' 

410 CLS: 

420 ' 

430 PRINT "A N G S C A N P (1.0)": PRINT"" 

440 PRINT "This program physically SCANS the DETECTOR using user-specified" 

450 PRINT "steps and counts for a specified time at each position with laser on," 

460 PRINT "ion beam on, then counts for an equal time with all on," 

470 PRINT "and stores all three counts plus the darkcount onto disk." 

480 PRINT"" 

490 BEEP: PRINT"": PRINT "Hit any key when ready..." 

500 A$=INKEY$: IF A$="" THEN 500 

510 ' 

520 ' *** Poke in machine language routinge *** 

530 ' 

540 PRINT "": PRINT "Loading PC21 & CAMAC I/O drivers ..." 

550 ' 

560 OPEN "C:\BASICDIR\NEW\CODE.BAS" FOR INPUT AS #1    ' Access machine code data file 

570 FOR X = 0! TO 127! 

580   INPUT #1, J ' Install machine code 

590    POKE X,J 

600 NEXT 

610 CLOSE #1 

620 ' 

630 ' *** Set all program variables *** 

640 ' 

650 ADDRESS0/» = 768 ' PC21 base address 

660 CONTROL = 96 ' Normal state of PC21 Control Byte 

670 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out) 

680 FAULT = 32 ' Mask for C.B. 5 (restart BMA) 

690 PC21 WRITE = 0! ' Address of PC21WRITE subroutine 

700 PC21READ = 49! ' Address of PC21READ subroutine 

710 ' 

720 DAC# = 12 'DAC module in CAMAC slot #12 

730 ' ch#: 0:shutter, l:not used, 2:ion beam shutter 

740 ' 3:notused 

750 TIM# = 10 ' TTMER/SCALER module in CAMAC slot #10 

760 DELAY1# = 1 ' Delaytime for solenoid shutter in sec. 

770 DELAY2# = 2 ' Delaytime for ion beam response in sec. 

780 ' 

790 DATDIR$ = "C:\SPUTTER\ANGDAT\"      ' Directory for data files 
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800 ' 

810 CMSG$=" "     'ClearString 

820 ' 

830 FLGOFF = 2.5 ' Offset for 0 degree detector position 

840 MAXANG = 110 ' Maximum detector position due to FIBER !!! 

850 ' 

860 '*** PC21 RESET **» 

870 ' 

880 OUT ADDRESS%+1, ( CONTROL OR CRASH) ' Control Bit 2 high 

890 OUT ADDRESS%+1, (CONTROL AND NOT CRASH) ' Control Bit 2 low 

900 FOR Y=l TO 500: NEXT ' Wait for BMA 

910 OUT ADDRESS%+1, ( CONTROL AND NOT FAULT) ' Control Bit 5 low 

920 OUT ADDRESS%+1, ( CONTROL OR FAULT) ' Control Bit 5 high 

930 ' 

940 ' *** Load CAMAC drivers and initialize crate *** 

950 ' 

960 BLOAD "C: \ BASICDIRX NEW\ CAMIO",128        ' Load drivers into data segment 

970 CAMO=&H80:CAMI=&H86:CAML=&H8C:CAMCL=&H92 ' Driver entry point addresses 

980 CAMO24=&HB0:CAMI24=&HB6:CRATE=&HAA       ' Driver entry point addresses 

990 CC%=1: CALL CRATE(CC%) ' Activate controller in Jl slot 

1000 OUT &H240,0 ' Clear high write-only data register 

1010 I%=64: CALL CAMCL(I%) ' Reset crate 

1020 I%=1: CALL CAMCL(I%) ' Initialize crate 

1030 N%=TIM#:F%=17:A%=13:D%=l:GOSUB 3260   ' Write timer/sealer LAM mask-generate 

1040 ' LAM when channel 1 finishes counting 

1050 GOSUB 3370 

1060 ' 

1070 ' *** Initialization *** 

1080 ' 

1090 A1%=0:D1%=0: GOSUB 3910   ' Laser beam shutter should be open! 

1100 PRINT "Laser beam shutter:  OPEN!" 

1110 N%=DAC#:F%=16:A%=2:D%=32700: GOSUB 3260 ' Ion beam shutter should be open! 

1120 PRINT "Ion beam shutter :   OPEN!" 

1130 ' 

1140 PRINT "Detector :   Moving to 0 degree!" 

1150 COMMAND$="FSBl FSC1 MN Al V.l": GOSUB 2910  ' Moving detector to 0 degree! 

1160 POS0=0: POSl=2: GOSUB 3110 ' Make sure not on an endpoint 

1170 POS0=0:POSl=-10: GOSUB 3110 

1180 IF ENDFLG=0 THEN 1170 

1190 POS0=0: POSl=FLGOFF: GOSUB 3110: POS0=0    ' Compensate for offset 

1200 ' 
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1210 ' *** Define data file name *** 

1220 ' 

1230 PRINT"" 

1240 BEEP: PRINT "Data file name:";: INPUT FILNAM$ 

1250 ON ERROR GOTO 1340 

1260 OPEN DATDIR$+FILNAM$ FOR INPUT AS #1 ' Test to see if file already exists. 

1270 ' File exists. Ask user what to do!! 

1280 BEEP: BEEP 

1290 PRINT "File exists! Continue [y/n]: ? " 

1300 V$=INKEY$: IF V$="" THEN GOTO 1300 

1310 IF V$="Y" OR V$="y" THEN GOTO 1350 ' Overwrite existing file. 

1320 IF V$="N" OR V$="n" THEN GOTO 1240   ' Get a new name for file. 

1330 GOTO 1300 

1340 RESUME 1350 ' File nonexistent. Proceed. 

1350 ON ERROR GOTO 0 

1360 CLOSE #1 ' Close temporary input file. 

1370 OPEN DATDIR$+FILNAM$ FOR OUTPUT AS #1 ' Open output file. 

1380' 

1390 ' *** Print file header **» 

1400' 

1410 PRINT #l,"Data stored by ANGSCAN1.0 on ";DATE$;" at ";TIME$ 

1420 PRINT "File header:";: INPUT HDR$ 

1430 PRINT #1, "File header: ";HDR$ 

1440 IF NOT EOF(2) THEN ASMSG$=INPUT$(1,#2): GOTO 1430   'switch to settle. 

1450' 

1460 ' *** Enter parameter for measurement *** 

1470' 

1480 BEEP: PRINT"": PRINT "Integration time (> 1 sec):";: INPUT ITIM 

1490 IF ITEM-cl THEN ITIM=1 

1500 IF ITIM>10000! THEN BEEP: BEEP: PRINT "Out of Range": GOTO1480: PRINT "" 

1510 T=ITIM: GOSUB 3660: TSAVE%=TIMEC% 

1520 MSG$=" sec integration.": PRINT #1,STR$(T);MSG$ 

1530 PRINT "Enter # spectra (1-100) :";: INPUT NSPEC% 

1540 IF NSPEC%<1 OR NSPEC%>100 THEN 1530 

1550 PRINT #1,NSPEC%;" spectra." 

1560 PRINT "Starting angle :";: INPUT ANG0 

1570 IF ANG0 > MAXANG THEN PRINT "Position out of limit!!!": GOTO 1560 

1580 PRINT "Ending angle :";: INPUT ANGEND 

1590 IF ANGEND > MAXANG THEN PRINT "Position out of limit!!!": GOTO 1580 

1600 PRINT "Degrees per step :";: INPUT DELANG 

1610 NINC=INT((ANGEND-ANG0)/DELANG+.5): ANGEND=ANG0+NINC*DELANG 
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1620 IF NINC<0 THEN NINC=-NINC: DELANG=-ABS(DELANG) 

1630 PRINT "Scanning from ";ANG0;" degrees to ";ANGEND;" degrees in ";NINC;" steps." 

1640 PRINT #1, "Scanning from";ANG0;" degrees to ";ANGEND;" degrees in ";NINC;" steps." 

1650 PRINT "Ion sputter angle: ";:INPUT Al 

1660 PRINT #1, "Ion sputter angle: ";A1 

1670 PRINT "Sample Metal: ";:INPUT Bl$ 

1680 PRINT #1, "Sample Metal: ";B1$ 

1690 PRINT "Sputter Ion : ";:INPUT B2$ 

1700 PRINT #1, "Sputter Ion : ";B2$ 

1710 PRINT "photomultiplier voltage :";:INPUT A2 

1720 PRINT #1, "photomultiplier voltage :";A2 

1730 PRINT "Ion beam current:";: INPUT A3 

1740 PRINT #1, "Ion beam current:"; A3 

1750 PRINT "Ion beam voltage :";: INPUT A4 

1760 PRINT #1, "Ion beam voltage :"; A4 

1770 PRINT "Moving detector to ";ANG0;" degree" 

1780 POS0=0: POSl=ANG0: GOSUB 3110 

1790 IF ENDFLGoO THEN BEEP: BEEP: BEEP: PRINT "ERROR! Limit switch hit!": STOP 

1800 BEEP: PRINT "Laser frequency (cmA-l)   :";: INPUT NRG# 

1810 PRINT #1, "Laser frequency (cmA-l) :";NRG# 

1820 PRINT "laser power(milliwatts) :";:INPUT A5 

1830 PRINT #1, "laser power (milliwatts):"; A5 

1840 PRINT "number of steps before pause:";:INPUT NSTEPS 

1850 PRINT #1, "number of steps before pause:"; NSTEPS 

1860 PRINT #1," I all on I - I laser on I - I ion on I + I dark count I = I Total count I" 

1870 NRG$=STR$(NRG#): MSG$="GOK"+NRG$+CHR$(13): GOSUB 4120 ' Tell AUTOSCAN to go there. 

1880 MSG$="PEAK BRF"+CHR$(13):GOSUB 4120 

1890 MSG$="PEAK ETA"+CHR$(13):GOSUB 4120 

1900' 

1910 ' *** Initialize plotting on the screen *** 

1920' 

1930 CLS: SCREEN 2: DRAW "BM 0,0 R=XM;D=YM2;L=XM;U=YM2;" 

1940 LOCATE 15,1: PRINT ANG0: LOCATE 16,1: PRINT NRG# 

1950 LOCATE 2,50: PRINT FILNAM$ 

1960 DELX=XM/NINC 'DELX used for plotting 

1970 ' 

1980 ' *** Starting the data collection *** 

1990' 

2000 DAC0(1)=6540:DAC0(2)=0:DAC0(3)=0 ' Settings for DAC 

2010DAC2(1)=32700:DAC2(2)=32700:DAC2(3)=0 

2020 TDEL(1)=DELAY2#:TDEL(2)=DELAY1#:TDEL(3)=DELAY1# ' Setting delay after solenoid and ion beam 
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2030 LABEL$(l)="Ion beam ON":LABEL$(2)="All ON":LABEL$(3)="Laser on" 

2040' 

2050 ' *** NSP data collection loop *** 

2060' 

2070 FOR NSP=1 TO NSPEC% ' Start scans 

2080 LOCATE 18,30: PRINT'collecting dark counts for 10 sec!" 

2090 N%=DAC#:F%=16:A%=2:D%=0:GOSUB 3260 'ion beam shutter closed 

2100 A1%=0:D1%=6540:GOSUB 3910   'laser shutter closed 

2110 T=10:GOSUB 3660:GOSUB 3510   'wait delay 

2120 T=10:GOSUB 3660:GOSUB 3420   10 sec dark count collection 

2130 SIGNAL* = D24%(1) AND 32767:IF D24%(1)<0 THEN SIGNAL#=SIGNAL#+32768# 

2140 FOR 1=1 TO D24%(2):SIGNAL#=SIGNAL#+65536#:NEXT I 

2150 DARKCNT=CINT(SIGNAL#/10):GOSUB 3590 

2160' 

2170   CLS: SCREEN 2: DRAW "BM 0,0 R=XM;D=YM2;L=XM;U=YM2;" 

2180  LOCATE 15,1: PRINT ANG0: LOCATE 16,1: PRINT NRG# 

2190   LOCATE 2,50: PRINT FILNAM$ 

2200   ' LOCATE 2,3: PRINT "spec#";NSP 

2210  X0%=0 ' Initialize x-axis of plot 

2220  POSl=ANG0: GOSUB 3110 ' then must reset detector, 

2230   NNCOUNT=0 

2240  FOR INCCNT=0 TO NINC ' Begin loop incrementing angle. 

2250    LOCATE 2,3: PRINT "spec#";NSP 

2260    IF INCCNT=0 THEN GOTO 2300 ' Don't need angle increment 1st time. 

2270    POS1 =DELANG*INCCNT+ANG0: GOSUB 3110' Move there. 

2280    TIM=TIMER 

2290    IF TTMER-TIM<.5 THEN 2290 

2300    LOCATE 18,1: PRINT" 

2310    LOCATE 18,1: PRINT USING "Angle = #######.###";POS0 

2320     ' 

2330   MSG$="READ"+CHR$(13):GOSUB 3960 

2340     '**** 

2350  WVMTR#= VAL(MID$(RMSG$,2,10)) 

2360   DELNRG= WVMTR#-NRG# 

2370    '**** 

2380    IF ABS(DELNRG)>.006 THEN BEEP: BEEP: 

2385    MSG$="PEAK BRF"+CHR$(13): GOSUB 3960 

2390    MSG$="PEAK ETA"+CHR$(13):GOSUB 3960 

2400    MSG$="GOK"+STR$(NRG#)+CHR$(13):GOSUB 3960 

2410    AVDEL= 0 

2420 FOR 11=1 TO 3 
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2430    MSG$="READ"+CHR$(13): GOSUB 3960   ' and verify wavelength. 

2440    WVMTR#(II)=VAL(MID$(RMSG$,2,10)) 

2450    DELNRG=WVMTR#(II)-NRG# 

2460    IF ABS(DELNRG)>.006 THEN GOTO 2385 

2470    IF ABS(DELNRG)<=.0017 THEN GOTO 2530 

2480    IF ABS(DELNRG)>.0017 THEN AVDEL=AVDEL+DELNRG 

2490 NEXT II 

2500    AVDEL=AVDEL/3! 

2510    MSG$="DELK"+STR$(-AVDEL)+CHR$(13): GOSUB 3960 

2520    GOTO 2410 

2530    FOR DACSW=1 TO 3 

2540      LOCATE 18,30: PRINT" 

2550      LOCATE 18,30: PRINT LABEL$(DACSW) 

2560      N%=DAC#:F%=16:A%=2:D%=DAC2(DACSW): GOSUB 3260 ' Set DAC on/off depending on 

2570      A1%=0:D1%=DAC0(DACSW): GOSUB 3910 ' Dacsw 

2580      T=TDEL(DACSW): GOSUB 3660: GOSUB 3510      ' Wait for time delay! 

2590      TTMEC%=TSAVE%: GOSUB 3420 ' now Count for TSAVE% 

2600      SIGNAL#=D24%(1) AND 32767: IF D24%(1)<0 THEN SIGNAL#=SIGNAL#+32768# 

2610      FOR 1=1 TO D24%(2): SIGNAL#=SIGNAL#+65536#: NEXT I 

2620      SIG(DACSW)=SIGNAL#/ITTM: GOSUB 3590 

2630    NEXT DACSW 

2640    ' 

2650    DELSIG=SIG(2)-SIG(3)-SIG(1)+DARKCNT 

2660    PRINT #1,SIG(2),SIG(3),SIG(1),DARKCNT,DELSIG 

2670    LOCATE 19,1: PRINT " 

2680    LOCATE 19,1: PRINT INCCNT;": ";SIG(2);"-";SIG(3);"-";SIG(1);"+";DARKCNT;"=";DELSIG 

2690    YP%=(YM/PFAC)*(PMAX-DELSIG): XP%=INCCNFDELX: IF YP%>YM2 THEN YP%=YM2 

2700    DRAW "BM=X0%;,=Y0%;": DRAW "M=XP%;,=YP%;": Y0%=YP%: X0%=XP% 

2710    SIG(1)=0:SIG(2)=0:SIG(3)=0 'Reset accumulated signals for next frequency 

2720    NNCOUNT=NNCOUNT+l 

2730 IF NNCOUNT=NSTEPS THEN GOSUB 4210 

2740   NEXT INCCNT 

2750   ' 

2760   BEEP 

2770 PRINT #l,"xxxxxxxxxxx" 

2780 NEXT NSP 

2790' 

2800 CLOSE 

2810 LOCATE 23,1: BEEP: BEEP: PRINT ">»(EXIT Angscanl.O with 'E')" 

2820 A$=INKEY$: IF (A$="E") OR (A$="e") THEN CLS ELSE 2820 

2830 END 
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2840' 

2850 ' 

2860 ' *** SUBROUTINES ARE LOCATED HERE !!!»** 

2870' 

2880 ' *** PC21 WRITE *** 

2890' 

2900 BFLAG%=0 

2910 IF INSTR(COMMAND$,"Wl") OR INSTR(COMMAND$,"wl") THEN BFLAG%=1 

2920 IF INSTR(COMMAND$/'PB") OR INSTR(COMMAND$/'pb") THEN BFLAG%=1 

2930 IF INSTR(COMMAND$;'XlB") OR INSTR(COMMAND$/'xlb") THEN BFLAG%=1, 

2940 COMMANDS = COMMANDS + CHR$(13)     ' Add carriage return to command 

2950 CALL PC21WRITE(COMMAND$, ADDRESS%) ' Execute machine language write 

2960 RETURN 

2970' 

2980 ' *** PC21 READ *** 

2990' 

3000 ANSWER$=" "+""    ' Reserve string space for response 

3010 CALL PC21READ( ANSWERS, ADDRESS%, BFLAG%) ' Execute read 

3020 IF BFLAG%=0 THEN RETURN 

3030 NUM#=0: FOR X=l TO 4 

3040DIGIT%=ASC(MID$(ANSWER$,X,1)) 

3050 NUM#=NUM#+DIGIT%»256A(4-X): NEXT 

3060 ANSWER$=STR$(NUM#) 

3070 RETURN ' BFLAG% identifies binary report commands 

3080' 

3090 ' *** Move Detector POS1-POS0 degrees (check for end switch) *** 

3100' 

3110 DEG=ABS(POSl-POS0): DIR$="+": IF POSl-POS0<0 THEN DIR$="-" 

3120 AVTTM=DEGM5: ENDFLG=0: IF AVTIM<.5 THEN AVTIM=.5 

3130 STEPS=INT(DEG*4000/180+.5)       ' Convert degrees to motor steps 

3140 STEPSS=MID$(STR$(STEPS),2) 

3150 DEGAC=STEPS*180/4000: IF DIR$="-" THEN DEGAC=-DEGAC 

3160 COMMAND$="D"+DIR$+STEPS$+" G CR P": GOSUB 2910 ' Move & signal when done 

3170 T0=TIMER 

3180 GOSUB 3000: IF LEFT$(ANSWER$/1)=CHR$(13) THEN 3210 ' Keep going till end 

3190 T1=TIMER: IF T1-T0<AVTIM THEN 3180 ' If not done after AV1TM, 

3200 ENDFLG=1: GOTO 3220 ' End switch must have been hit. 

3210 POS0=POS0+DEGAC 

3220 RETURN 

3230' 

3240 ' »** Main WRITE /READ Subroutines to CAM AC *** 
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3250' 

3260 CALL CAMO(N%,F%,A%,D%,Q%,X%) 

3270 RETURN 

3280' 

3290 CALL CAMI24(N%/F%,A%,D24%(1),Q%/X%) 

3300 RETURN 

3310' 

3320 CALL CAMI(N%,F%,A%,D%,Q%,X%) 

3330 RETURN 

3340' 

3350 ' *** initialize DAC, put all channels (0...3) to OV! *** 

3360' 

3370 FOR 1=0 TO 3: N%=DAC#:F%=16:A%=I:D%=0: GOSUB 3260: NEXT 

3380 RETURN 

3390' 

3400 ' *** Set timer/sealer ***- 

3410' 

3420 N%=TIM#:F%=17A%=0:D%=TIMEC%: GOSUB 3260   ' D% must contain time. 

3430 N%=TIM#:F%=17:A%=4:D%=1: GOSUB 3260        ' Start counting 

3440 CALL CAML(L%) :IF L%=0 THEN 3440 ' Wait for count to end 

3450 N%=TIM#:F%=23:A%=12:D%=1: GOSUB 3260       ' Clear timer LAM 

3460 N%=TIM#:F%=0: A%=1: GOSUB 3290: GOTO 3590    ' Read sealer 

3470 RETURN 

3480' 

3490 ' *** Wait delay *** 

3500' 

3510 N%=TIM#:F%=17:A%=0:D%=TIMEC%: GOSUB 3260    ' D% must contain time! 

3520 N%=TIM#:F%=17:A%=4:D%=1: GOSUB 3260        ' Start wait delay 

3530 CALL CAML(L%): IF L%=0 THEN 3530 ' Wait for time to end 

3540 N%=TIM#:F%=23:A%=12:D%=1: GOSUB 3260: GOTO 3590 ' Clear timer LAM 

3550 RETURN 

3560 ' 

3570 ' *** Clear timer/sealer »** 

3580 ' 

3590 N%=TIM#:F%=9:A%=0:D%=0: GOSUB 3260 

3600 N%=TIM#:F%=9:A%=1:D%=0: GOSUB 3260 

3610 RETURN 

3620 ' 

3630 ' *** Subroutine for converting time (T) to a special 

3640 '    formatted integer (TIMEC%) used by CAMAC timer. *** 

3650' 
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3660 TS=T: TB%=INT((LOG(T/1000))/2.30258): ERFLG%=0 

3670 TBAS=10ATB%: T=T/TBAS: N=0 

3680 IF T<2 GOTO 3700 

3690 N=N+1: T=T/2: GOTO 3680 

3700 J=32*(T-1)+1 

3710 IOVF%=N-OVFTBL%(J) 

3720 IF IOVF%<0 THEN TB%=TB%-1: GOTO 3670 

3730 IF IOVF%>15 THEN TB%=TB%+1: GOTO 3670 

3740 TB%=TB%+6: IF TB%<0 OR TB%>7 THEN PRINT "Time requested outside range": ERFLG%=1: GOTO 3780 

3750 MULT%=MULTBL%(J) 

3760TA=TBAS*(2*MULT%+l)*2A(IOVF%+4) 

3770TIMEC%=(128!*MULT%)+(8!*IOVF%)+TB% 

3780 T=TS 

3790 RETURN 

3800' 

3810 ' *** Initialize the solenoid shutter (result: shutter is CLOSED!) *** 

3820' 

3830 N%=DAC#:F%=16:A%=1:D%=32700: GOSUB 3260 

3840 N%=DAC#:F%=16:A%=0:D%=32700: GOSUB 3260 

3850 N%=DAC#:F%=16:A%=0:D%=0: GOSUB 3260 

3860 N%=DAC#:F%=16:A%=0:D%=32700: GOSUB 3260 

3870 RETURN 

3880' 

3890 ' *** Open/close solenoid shutter *** 

3900' 

3910 N%=DAC#:F%=16:A%=A1%:D%=D1%: GOSUB 3260 

3920 RETURN 

3930' 

3940 ' *** Send Message to Apple via RS232 *** 

3950' 

3960 LOCATE 20,1: PRINT ">» Remote Apple control:" 

3970 LOCATE 21,1: PRINT CMSG$: LOCATE 21,1 

3980 FOR IMSG=1 TO LEN(MSG$): V$=MID$(MSG$,IMSG,1): PRINT #2,V$;: NEXT 

3990 PRINT MSG$: RMSG$="" 

4000 IF EOF(2) THEN 4000 

4010 WHILE NOT EOF(2) 

4020 ASMSG$=INPUT$(1,#2): ASMSG$=CHR$(ASC(ASMSG$)-128) 

4030 IF ASMSG$=CHR$(13) GOTO 4080 

4040 RMSG$=RMSG$+ASMSG$: WEND 

4050 IF ASC(ASMSG$)<>41 THEN GOTO 4000 

4060 RETURN 
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4070' 

4080 LOCATE 21,1: PRINT CMSG$;: LOCATE 22,1: PRINT CMSG$; 

4090 PRMSG$=RMSG$: RMSG$="": LOCATE 21,1: PRINT PRMSG$; 

4100 GOTO 4040 

4110 ' 

4120 FOR IMSG=1 TO LEN(MSG$): V$=MID$(MSG$,IMSG,1): PRINT #2,V$;: NEXT 

4130 PRINT RMSG$="" 

4140 IF EOF(2) THEN 4140 

4150 WHILE NOT EOF(2) 

4160 ASMSG$=INPUT$(1,#2): ASMSG$=CHR$(ASC(ASMSG$)-128) 

4170 IF ASMSG$=CHR$(13) THEN RMSG$="" 

4180 PRINT ASMSG$;: RMSG$=RMSG$+ASMSG$: WEND 

4190 IF ASC(ASMSG$)<>41 THEN GOTO 4140 

4200 RETURN 

4210 BEEP:PRINT"":PRINT"flash sample and hit any key to continue" 

4220 A$=INKEY$:IF A$="" THEN 4220 

4230 NNCOUNT=0 

4240 RETURN 
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CCOUNT.BAS 

1   MAX=60000# 

10 DIM OVFTBL%(32),MULTBL%(32) 

20 DATA 4,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9,5,9,8,9,7,9,8,9,6,9,8,9,7/9,8,9 

30 DATA 0,16,8,17,4,18,9,19,2,20,10,21,5,22,11,23,1,24,12,25,6,26,13,27,3,28,14,29,7,30,15,31 

40 CLS 

50 ISET=0:T=1 

60 FOR 1=1 TO 32:READ OVFTBL%(I):NEXT 

70 FOR 1=1 TO 32:READ MULTBL%(I):NEXT 

80 PRINT "CCOUNT: This program continously counts pulses from the photomultiplier" 

90 PRINT"       for a user-specified time." 

100' 

120 PRINT: PRINT "Loading PC21 and CAMAC I/O drivers." 

130 GOTO 520 ' Load machine language I/O routine 

140 GOSUB 300 ' Set all program variables and reset the PC21 

150 GOTO 740 ' Initialize crate and run main program 

160TS=T:TB%=INT((LOG(T/1000))/2.30258):ERFLG%=0 

170 TBAS = 10ATB%:T=T/TBAS:N=0 

180 IF T<2 GOTO 200 

190 N=N+l:T=T/2:GOTO 180 

200 J=32*(T-1)+1 

210 IOVF%=N-OVFTBL%g) 

220 IF IOVF%<0 THEN TB%=TB%-l:GOTO 170 

230 IF IOVF%>15 THEN TB%=TB%+l:GOTO 170 

240 TB%=TB%+6:IF TB%<0 OR TB%>7 THEN PRINT "Time outside range!":ERFLG%=l:GOTO 280 

250 MULT% = MULTBL%(J) 

260 TA=TBAS*(2*MULT%+l)*2A(IOVF%+4)    . 

270 D%=(128!*MULT%)+(8!*IOVF%)+TB%:DSAVE%=D% 

280 T=TS: RETURN 

290 '   ****** Set all program variables ****** 

300 ADDRESS% = 768 ' PC21 base address 

310 CONTROL = 96 ' Normal state of PC21 Control Byte 

320 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out) 

330 FAULT = 32 ' Mask for C.B. 5 (restart BMA) 

340 PC21 WRITE = 0! ' Address of PC21WRITE subroutine 

350 PC21READ = 49! ' Address of PC21READ subroutine 

360 '   ****** PC21 RESET ****** 

370 OUT ADDRESS%+1, (CONTROL OR CRASH) 'Control Bit 2 high 

380 OUT ADDRESS%+1, ( CONTROL AND NOT CRASH)   Control Bit 2 low 
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390 FOR Y=l TO 500:NEXT 'wait for BMA 

400 OUT ADDRESS%+1, ( CONTROL AND NOT FAULT)  'Control Bit 5 low 

410 OUT ADDRESS%+1, ( CONTROL OR FAULT) 'Control Bit 5 high 

420 RETURN 

430 '   ****** PC21 WRITE ****** 

440 BFLAG%=0 

450 IF INSTR(COMMAND$,"Wl") OR INSTR(COMMAND$/'wl") THEN BFLAG%=1 

460 IF INSTR(COMMAND$/'PB") OR INSTR(COMMAND$/'pb") THEN BFLAG%=1 

470 IF INSTR(COMMAND$/'XlB") OR INSTR(COMMAND$,"xlb") THEN BFLAG%=1 

480 COMMANDS = COMMANDS + CHR$(13) ' Add carriage return to command 

490 CALL PC21WRITE(COMMAND$/ ADDRESS%) ' Execute machine language write 

500 RETURN 

510 '   *** Clear memory and poke in machine language routines *** 

520 GOSUB 690 ' Find data segment above BASICA 

530 OPEN "CODE.BAS" FOR INPUT AS #1 ' Access machine code data file 

540 FOR X = 0! TO 127! 

550 INPUT #1,1 ' Install machine code 

560 POKE X J 

570 NEXT:CLOSE 

580 GOTO 140 

590 '   ****** PC21 READ ****** 

600 ANSWER$=" "+"" ' Reserve string space for response 

610 CALL PC21READ( ANSWERS, ADDRESS%, BFLAG%)    ' Execute read 

620 IF BFLAG%=0 THEN RETURN 

630 NUM#=0:FOR X=l TO 4 

640 DIGLT%=ASC(MID$(ANSWER$,X,1)) 

650NUM#=NUM#+DIGIT%*256A(4-X):NEXT 

660 ANSWER$=STR$(NUM#) 

670 RETURN ' BFLAG% identifies binary report commands 

680 '   ****** Find data segment above BASICA ****** 

690 DEF SEG=0 ' Go to low memory to find BASICA loc. 

700 BDATSEG=PEEK(&H510)+256*PEEK(&H511) ' BASICA data segment is in &H510-511 

710 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA 

720 DEF SEG=CAMSEG:RETURN 

730 •   ****** Load CAMAC drivers and initialize crate ****** 

740 BLOAD "CAMlö',128 ' Load drivers into data segment 

750 CAMO=&H80:CAMI=&H86:CAML=&H8C:CAMCL=&H92     ' Driver entry point addresses 

760 CAMO24=&HB0:CAMI24=&HB6:CRATE=&HAA ' Driver entry point addresses 

770 CC%=1:CALL CRATE(CC%) ' Activate controller in Jl slot 

780 OUT &H240,0 ' Clear high write-only data register 

790 I%=64:CALL CAMCL(I%) ' Reset crate 
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8001%=1 :CALL CAMCL(I%) ' Initialize crate 

810 N%=10:F%=17:A%=13:D%=1:GOSUB 1050 ' Write timer/sealer LAM mask-generate 

820 ' LAM when channel 1 finishes counting 

830 PRINT 

840 PRINT "Enter time (in seconds) to count (0 to exit program):" 

850 INPUT T$ 

860 IF T$ = "0" GOTO 1070 

870 PRINT 

880 ISET = BET +1: IF T$="" AND ISET >1 THEN D%=DSAVE%:GOTO 920 

890 IF ISET=1 AND T$="" THEN T$="l" 

900 T=VAL(T$):IF T<.000001 OR T>1000000! THEN PRINT "Out of Range":GOTO 840 

910 GOSUB 160:IF ERFLG%<>0 THEN PRINT "Out of Range": GOTO 840 

920 F%=17:A%=0:GOSUB 1050 ' Set preset register 

930 A%=4:D%=l:GOSUB 1050 ' Start counting 

940 CALL CAML(L%):IF L%=0 THEN 940 * Wait for count to end 

960 F%=23:A%=12:D%=l:GOSUB 1050 ' Clear timer LAM 

970 F%=0:A%=1:CALL CAMI24(N%,F%,A%,D24%(1)/Q%/X%) ' Read sealer 

980 SIGNAL#=D24%(1) AND 32767:IF D24%(1)<0 THEN SIGNAL#=SIGNAL#+32768# 

985 ,"*SIGNAL#=D24%(1): IF D24%(1)<0 THEN SIGNAL#=SIGNAL#+32768# 

990 FOR 1=1 TO D24%(2):SIGNAL#=SIGNAL#+65536#:NEXT I 

991 SIG=(SIGNAL#/TA) 

1000  PRINT SIG;" counts in ";TA;" seconds." 

1010F%=16:A%=0:N%=12:D%=(32765.2/MAX)*SIGNAL#/TA 

1011 IF D% > 32767 THEN D% = 32767 

1012 CALL CAMO(N%,F%,A%,D%/Q%,X%) 

1013 N%=10 

1020   F%=9:A%=0:D%=0:GOSUB 1050 ' Clear timer 

1030   F%=9:A%=1:D%=0:GOSUB 1050 'Clear sealer 

1040 D%=DSAVE%:GOTO 920 ' Loop back for next scan 

1050 CALL CAMO(N%,F%,A%,D%,Q%/X%) 

1060 RETURN 

1070 END 
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COVER.BAS 

10   REM  Cover V1.0, (coverage decrease) modified 8/13/90 to increase DELAY(3)   (TW) 

20  REM  Graphic boundaries and flag offset are set at 910-920  (TW) 

30   REM  modified 08/20/92: solenoid operation, waitdelay  (WM) 

40   REM 08/27/92: program structure  (WM) 

50   REM     09/30/93: program structure (PRS) 

60  REM  files needed    : hbasic.exe, basica.com, code.bas, camio.bas 

70   ' 

80 ' *** Find data segment above BASICA *** 

90 ' 

100 CLEAR: CLS ' Set all variables to "0" 

110 DEFSEG=0 ' Go to low memory to find BASICA loc. 

120 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511 

130 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA 

140 DEF SEG=CAMSEG 

150 ' 

160 ' *** Open COM channel to Apple Comp. *** 

170 ' 

180 OPEN "COM1:9600,N,8,1" AS #2 

190 MSG$="READ"+CHR$(13):GOSUB 3830 

200 ' 

210 ' *** Dimension of variables *** 

220 ' 

230 DIMOWTBL%(32),MULTBL%(32),DAC0(4),DAC2(4),TDEL(4),SIG(4) 

240 DIM WVMTR#(3)/D24%(2),LABEL$(4) 

250 DATA 4,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9,5,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9 

260 DATA 0,16,8,17,4,18,9,19,2,20,10,21,5,22,11,23,1,24,12,25,6,26,13,27 

270 DATA 3,28,14,29,7,30,15,31 

280 FOR 1=1 TO 32: READ OVFTBL%(I): NEXT   'Load in tables for conversion of 

290 FOR 1=1 TO 32: READ MULTBL%(I): NEXT   'time. 

300 ' 

310 ' *** Setting parameters *** 

320 ' 

330 PRINT "y minimum value for screen plot: ";:INPUT PMIN 

340 PRINT "y maximum value for screen plot:";: INPUT PMAX 

350 PFAC=(PMAX-PMIN) 

360 XM=600: YM=400: YM2=YM/2 

370 ' 

380 ' *** Program header *** 
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390 ' 

400 CLS 

410 ' 

420 PRINT "Cover(l.O)": PRINT"" 

430 PRINT "This program physically moves the DETECTOR to a user-specified" 

440 PRINT "position and counts for a specified time with laser" 

450 PRINT "on ion beam on, then counts for an equal time with laser on ion" 

460 PRINT "beam off, then counts another period with both off and finally" 

470 PRINT "counts with ion beam on and laser off and stores all" 

480 PRINT "four counts on to disk." 

490 BEEP: PRINT"": PRINT "Hit any key when ready ..." 

500 A$=INKEY$: IF A$="" THEN 500 

510 ' 

520 ' *** Poke in machine language routinge *** 

530 ' 

540 PRINT "": PRINT "Loading PC21 & CAMAC I/O drivers ..." 

550 ' 

560 OPEN "C:\BASICDIR\NEW\CODE.BAS" FOR INPUT AS #1    ' Access machine code data file 

570 FOR X = 0! TO 127! 

580   INPUT #1,J ' Install machine code 

590   POKE X,J 

600 NEXT 

610 CLOSE #1 

620 ' 

630 ' *** Set all program variables *** 

640 ' 

650 ADDRESS% = 768 ' PC21 base address 

660 CONTROL = 96 ' Normal state of PC21 Control Byte 

670 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out) 

680 FAULT = 32 ' Mask for C.B. 5 (restart BMA) 

690 PC21WRITE = 0! ' Address of PC21WRITE subroutine 

700 PC21READ = 49! ' Address of PC21READ subroutine 

710 ' 

720 DAC# = 12 ' DAC module in CAMAC slot #12 

730 ' ch#: 0:shutter, l:shutter, 2:ion beam shutter 

740 ' 3:notused 

750 TIM# = 10 ' TIMER/SCALER module in CAMAC slot #10 

760 DELAY1# = 3 ' Delaytime for solenoid shutter in sec. 

770 DELAY2# = 3 ' Delaytime for ion beam response in sec. 

780 ' 

790 DATDIRS = "C:\SPUTTER\COVER\"      ' Directory for data files 
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800 ' 

810 CMSG$=" "     'ClearString 

820 ' 

830 FLGOFF = 2.5 ' Offset for 0 degree detector position 

840 MAXANG = 110 ' Maximum detector position due to FIBER !!! 

850 ' 

860 '*** PC21 RESET *** 

870 ' 

880 OUT ADDRESS%+1, (CONTROL OR CRASH) ' Control Bit 2 high 

890 OUT ADDRESS%+1, ( CONTROL AND NOT CRASH) ' Control Bit 2 low 

900 FOR Y=l TO 500: NEXT ' Wait for BMA 

910 OUT ADDRESS%+1, (CONTROL AND NOT FAULT) ' Control Bit 5 low 

920 OUT ADDRESS%+1, (CONTROL OR FAULT) ' Control Bit 5 high 

930 ' 

940 ' *** Load CAMAC drivers and initialize crate *** 

950 ' 

960 BLOAD "C:\BASICDIR\NEW\CAMIO",128        ' Load drivers into data segment 

970 CAMO=&H80:CAMI=&H86:CAML=&H8C:CAMCL=&H92 ' Driver entry point addresses 

980 CAMO24=&HB0:CAMI24=&HB6:CRATE=&HAA       ' Driver entry point addresses 

990 CC%=1: CALL CRATE(CC%) ' Activate controller in Jl slot 

1000 OUT &H240,0 ' Clear high write-only data register 

1010 I%=64: CALL CAMCL(I%) ' Reset crate 

1020 I%=1: CALL CAMCL(I%) ' Initialize crate 

1030 N%=TIM#:F%=17:A%=13:D%=l:GOSUB 2960   ' Write timer/sealer LAM mask-generate 

1040 ' LAM when channel 1 finishes counting 

1050 GOSUB 3070: GOSUB 3530 

1060 ' 

1070 ' *** Initialization *** 

1080 ' 

1090 A1%=0:D1%=0: GOSUB 3610   ' Laser beam shutter should be open! 

1100 PRINT "Laser beam shutter:   OPEN!" 

1110 N%=DAC#:F%=16:A%=2:D%=32700: GOSUB 2960 ' Ion beam shutter should be open! 

1120 PRINT "Ion beam shutter :   OPEN!" 

1130 ' 

1140 PRINT "Detector :   Moving to 0 degree!" 

1150 COMMAND$="FSBl FSC1 MN Al V.l": GOSUB 2610  ' Moving detector to 0 degree! 

1160 POS0=0: POSl=2: GOSUB 2810 ' Make sure not on an endpoint 

1170 POS0=0: POS1=-10: GOSUB 2810 

1180 IF ENDFLG=0 THEN 1170 

1190 POS0=0: POSl=FLGOFF: GOSUB 2810: POS0=0    ' Compensate for offset 

1200 ' 
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1210 '*** Define data file name *** 

1220 ' 

1230 PRINT"" 

1240 BEEP: PRINT "Data file name:";: INPUT FILNAMS 

1250 ON ERROR GOTO 1340 

1260 OPEN DATDIR$+FILNAM$ FOR INPUT AS #1 ' Test to see if file already exists. 

1270 ' File exists. Ask user what to do!! 

1280 BEEP: BEEP 

1290 PRINT "File exists! Continue [y/n]: ? " 

1300 V$=INKEY$: IF V$="" THEN GOTO 1300 

1310 IF V$="Y" OR V$="y" THEN GOTO 1350 ' Overwrite existing file. 

1320 IF V$="N" OR V$="n" THEN GOTO 1240  ' Get a new name for file. 

1330 GOTO 1300 

1340 RESUME 1350 ' File nonexistent. Proceed. 

1350 ON ERROR GOTO 0 

1360 CLOSE #1 ' Close temporary input file. 

1370 OPEN DATDIR$+FILNAM$ FOR OUTPUT AS #1 ' Open output file. 

1380' 

1390 ' *»* Print file header *** 

1400 ' 

1410 PRINT #l,"Data stored by COVER1.0 on ";DATE$;" at ";TIME$ 

1420 PRINT "File header:";: INPUT HDR$ 

1430 PRINT #l/'File Header = ";HDR$ 

1440 IF NOT EOF(2) THEN ASMSG$=INPUT$(1,#2): GOTO 1430   'switch to settle. 

1450' 

1460 ' *** Enter parameter for measurement *** 

1470' 

1480 BEEP: PRINT"": PRINT "Integration time (> 1 sec):";: INPUT HTM 

1490 IF ITIM<1 THEN ITIM=1 

1500 IF ITTM>10000! THEN BEEP: BEEP: PRINT "Out of Range": GOTO 1480: PRINT"" 

1510 T=ITIM: GOSUB 3360: TSAVE%=TIMEC% 

1520 MSG$=" sec integration.": PRINT #1,STR$(T);MSG$ 

1530 PRINT "Detector angle :";: INPUT ANG0 

1540 IF ANG0 > MAXANG THEN PRINT "Position out of limit!!!": GOTO 1530 

1550 PRINT #1, "Detector angle : ";ANG0 

1560 PRINT "Ion sputter angle :";: INPUT Al 

1570 PRINT #1," Ion sputter angle : ";A1 

1580 PRINT "Sample Metal:";: INPUT Bl$ 

1590 PRINT #1, "Sample Metal: ";B1$ 

1600 PRINT "Sputter Ion : ";:InPUT B2$ 

1610 PRINT #1, "Sputter Ion : ";B2$ 
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1620 PRINT "photomultiplier voltage :";: INPUT A2 

1630 PRINT #1," photomultiplier voltage : ";A2 

1640 PRINT "ion beam current :";:INPUT A3 

1650 PRINT #1, "ion beam current: ";A3 

1660 PRINT" Ion beam voltage : ";:INPUT A5 

1670 PRINT #1," Ion beam voltage : ";A5 

1680 PRINT "NUMBER OF STEPS(EACH STEP=10+(4*integration time):";: INPUT NINC 

1690 PRINT "COUNTING AT ";ANG0;" degrees FOR ";CINT(NINC*(10+4*T)/60);" minutes." 

1700 PRINT "Moving detector to ";ANG0;" degrees" 

1710 POS0=0: POSl=ANG0: GOSUB 2810 

1720 IF ENDFLGoO THEN BEEP: BEEP: BEEP: PRINT "ERROR! Limit switch hit!": STOP 

1730 BEEP: PRINT "Laser frequency (cmA-l)   :";: INPUT NRG# 

1740 PRINT #1, "Laser frequency (cmA-l)   :"; NRG# 

1750 PRINT "laser power (milliwatts) :";: INPUT A4 

1760 PRINT #1, "Laser power (milliwatts) :"; A4 

1770 PRINT #1," I All on I - I Laser on I - I ion on I + I dark count I = I Total count I" 

1780 NRG$=STR$(NRG#): MSG$="GOK"+NRG$+CHR$(13): GOSUB 3830 ' Tell AUTOSCAN to go there. 

1790' 

1800 ' *** Initialize plotting on the screen *** 

1810' 

1820 CLS: SCREEN 2: DRAW "BM 0,0 R=XM;D=YM2;L=XM;U=YM2;" 

1830 LOCATE 15,1: PRINT ANG0: LOCATE 16,1: PRINT NRG# 

1840 LOCATE 2,50: PRINT FILNAM$ 

1850 DELX=XM/NINC 'DELX used for plotting 

I860' 

1870 ' *** Starting the data collection *** 

1880 ' 

1890 DAC0(1)=6540:DAC0(2)=0:DAC0(3)=6540:DAC0(4)=0 ' Settings for DAC 

1900DAC2(1)=0:DAC2(2)=0:DAC2(3)=32700:DAC2(4)=32700 

1910 TDEL(1)=DELAY1#:TDEL(2)=DELAY1#:TDEL(3)=DELAY1#:TDEL(4)=DELAY1# ' Setting delay after solenoid 

and ion beam 

1920 LABEL$(1)="A11 off":LABEL$(2)="Laser ON":LABEL$(3)="Ion beam ON":LABEL$(4)="All on" 

1930' 

1940 ' *** NSP data collection loop *** 

1950' 

1960  CLS: SCREEN 2: DRAW "BM 0,0 R=XM;D=YM2;L=XM;U=YM2;" 

1970  LOCATE 15,1: PRINT ANG0: LOCATE 16,1: PRINT NRG# 

1980  LOCATE 2,50: PRINT FTLNAM$ 

1990  X0%=0 .   'Initialize x-axis of plot 

2000 FOR NSP=1 TO NINC 

2010  MSG$="READ"+CHR$(13): GOSUB 3670   ' and verify wavelength. 
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2020 '**** 

2030 WVMTR#= VAL(MID$(RMSG$,2,10)) 

2040 DELNRG= WVMTR#-NRG# 

2050 '**** 

2060 IF ABS(DELNRG)>.006 THEN BEEP: BEEP: MSG$="GOK"+STR$(NRG#)+CHR$(13): GOSUB 3670 

2070 AVDEL=0 

2080 FOR 11=1 TO 3 

2090 MSG$="READ"+CHR$(13): GOSUB 3670   ' and verify wavelength. 

2100 WVMTR#(II)=VAL(MID$(RMSG$,2,10)) 

2110 DELNRG=WVMTR#(II)-NRG# 

2120 IF ABS(DELNRG)<=.001 THEN GOTO 2190 

2130 IF ABS(DELNRG)>.001 THEN AVDEL=AVDEL+DELNRG 

2140 NEXT II 

2150 AVDEL=AVDEL/3! 

2160 MSG$="DELK"+STR$(-AVDEL)+CHR$(13): GOSUB 3670 

2170 GOTO 2070 

2180' 

2190 TIM=TIMER 

2200 IF TIMER-TIM<.5 THEN 2200 

2210 LOCATE 18,1: PRINT" 

2220 LOCATE 18,1: PRINT USING "Angle = #######.###";POS0 

2230 ' 

2240 FOR DACSW=1 TO 4 

2250      LOCATE 18,30: PRINT " 

2260      LOCATE 18,30: PRINT LABEL$(DACSW) 

2270      N%=DAC#:F%=16:A%=2:D%=DAC2(DACSW): GOSUB 2960 ' Set DAC on/off depending on 

2280      A1%=0:D1%=DAC0(DACSW): GOSUB 3610' Dacsw 

2290      T=TDEL(DACSW): GOSUB 3360: GOSUB 3210      ' Wait for time delay! 

2300 TIMEC%=TSAVE%: GOSUB 3120 ' now Count for TSAVE% 

2310 SIGNAL#=D24%(1) AND 32767: IF D24%(1)<0 THEN SIGNAL#=SIGNAL#+32768# 

2320 FOR 1=1 TO D24%(2): SIGNAL#=SIGNAL#+65536#: NEXT I 

2330 SIG(DACSW)=SIGNAL#/ITIM: GOSUB 3290 

2340 NEXT DACSW 

2350 ' 

2360 '***LASERON=LASERON+SIG(l): IONON=IONON+SIG(2): ALLON=ALLON+SIG(3) 

2370 ' NEXT NC ' Save signal 

2380 ""*DELSIG=ALLON-LASERON-IONON+DRKCNT: PRINT #l,ALLON,LASERON,IONON 

2390 DELSIG=SIG(4)-SIG(2)-SIG(3)+SIG(1) 

2400 PRINT #1,SIG(4),SIG(2),SIG(3),SIG(1),CINT(DELSIG) 

2410 LOCATE 19,1: PRINT." 
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2420    ""LOCATE 19,1: PRINT ALLON;"-";LASERON;"-";IONON;"+";DRKCNT;"=";DELSIG;':LPRINT 

POS0,DELSIG 

2430    LOCATE 19,1: PRINT NSP;": ";SIG(4);"-";SIG(2);"-";SIG(3);"+";SIG(1);"=";CINT(DELSIG) 

2440    YP%=(YM/PFAC)*(pmax-delsig): XP%=(NSP-1)*DELX: IF YP%>YM2 THEN YP%=YM2 

2450    DRAW "BM=X0%;,=Y0%;": DRAW "M=XP%;,=YP%;": Y0%=YP%: X0%=XP% 

2460    SIG(1)=0:SIG(2)=0:SIG(3)=0:SIG(4)=0 'Reset accumulated signals for next frequency 

2470   ' 

2480 NEXT NSP 

2490' 

2500 CLOSE 

2510 LOCATE 23,1: BEEP: BEEP: PRINT ">»(EXIT Angscanl.O with 'E')" 

2520 A$=INKEY$: IF (A$="E") OR (A$="e") THEN CLS ELSE 2520 

2530 END 

2540' 

2550' 

2560 ' *** SUBROUTINES ARE LOCATED HERE !!! *** 

2570' 

2580 ' *** PC21 WRITE *** 

2590' 

2600 BFLAG%=0 

2610 IF INSTR(COMMAND$,"Wl") OR INSTR(COMMAND$,"wl") THEN BFLAG%=1 

2620 IF INSTR(COMMAND$,"PB") OR INSTR(COMMAND$,"pb") THEN BFLAG%=1 

2630 IF INSTR(COMMAND$,"XlB") OR INSTR(COMMAND$,"xlb") THEN BFLAG%=1 

2640 COMMANDS = COMMANDS + CHR$(13)     ' Add carriage return to command 

2650 CALL PC21WRITE(COMMAND$, ADDRESS0/») ' Execute machine language write 

2660 RETURN 

2670' 

2680 ' *** PC21 READ *** 

2690' 

2700 ANSWER$=" "+""    ' Reserve string space for response 

2710 CALL PC21READ( ANSWERS, ADDRESS%, BFLAG%) ' Execute read 

2720 IF BFLAG%=0 THEN RETURN 

2730 NUM#=0: FOR X=l TO 4 

2740DIGIT%=ASC(MID$(ANSWER$,X,1)) 

2750 NUM#=NUM#+DIGIT%*256A(4-X): NEXT 

2760 ANSWER$=STRS(NUM#) 

2770 RETURN ' BFLAG% identifies binary report commands 

2780' 

2790 ' *** Move Detector POS1-POS0 degrees (check for end switch) *** 

2800' 

2810 DEG=ABS(POSl-POS0): DIR$="+": IF POSl-POS0<0 THEN DIR$="-" 
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2820 AVTIM=DEGM5: ENDFLG=0: IF AVTtM<.5 THEN AVTIM=.5 

2830 STEPS=INT(DEG*4000/180+.5)       ' Convert degrees to motor steps 

2840 STEPS$=MID$(STR$(STEPS),2) 

2850 DEGAC=STEPS*180/4000: IF DIR$="-" THEN DEGAC=-DEGAC 

2860 COMMAND$="D"+DIR$+STEPS$+" G CR P": GOSUB 2610 ' Move & signal when done 

2870 T0=TIMER 

2880 GOSUB 2700: IF LEFT$(ANSWER$/1)=CHR$(13) THEN 2910 ' Keep going till end 

2890 T1=TIMER: IF T1-T0<AVTIM THEN 2880 ' If not done after AVTIM, 

2900 ENDFLG=1: GOTO 2920 ' End switch must have been hit. 

2910 POS0=POS0+DEGAC 

2920 RETURN 

2930 ' 

2940 ' *** Main WRITE/READ Subroutines to CAMAC *** 

2950' 

2960 CALL CAMO(N%,F%,A%,D%,Q%,X%) 

2970 RETURN 

2980 ' 

2990 CALL CAMI24(N%,F%,A%,D24%(1),Q%,X%) 

3000 RETURN 

3010' 

3020 CALL CAMI(N%/F%,A%,D%,Q%,X%) 

3030 RETURN 

3040' 

3050 ' »** initialize DAC, put all channels (0...3) to OV! *** 

3060 ' 

3070 FOR 1=0 TO 3: N%=DAC#:F%=16:A%=I:D%=0: GOSUB 2960: NEXT 

3080 RETURN 

3090 ' 

3100 ' *** Set timer/sealer *** 

3110' 

3120 N%=TIM#:F%=17:A%=0:D%=TIMEC%: GOSUB 2960   ' D% must contain time. 

3130 N%=TIM#:F%=17:A%=4:D%=1: GOSUB 2960        ' Start counting 

3140 CALL CAML(L%):IF L%=0 THEN 3140 ' Wait for count to end 

3150 N%=TIM#:F%=23:A%=12:D%=1: GOSUB 2960       ' Clear timer LAM 

3160 N%=TTM#:F%=0:A%=1: GOSUB 2990: GOTO 3290   ' Read sealer 

3170 RETURN 

3180 ' 

3190 ' *** Wait delay *** 

3200 ' 

3210 N%=TIM#:F%=17:A%=0:D%=TIMEC%: GOSUB 2960   ' D% must contain time! 

3220 N%=TIM#:F%=17:A%=4:D%=1: GOSUB 2960        ' Start wait delay 
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3230 CALL CAML(L%): IF L%=0 THEN 3230 ' Wait for time to end 

3240 N%=TIM#:F%=23:A%=12:D%=1: GOSUB 2960: GOTO 3290 ' Clear timer LAM 

3250 RETURN 

3260 ' 

3270 ' *** Clear timer/sealer *** 

3280 ' 

3290 N%=TIM#:F%=9:A%=0:D%=0: GOSUB 2960 

3300 N%=TIM#:F%=9:A%=1:D%=0: GOSUB 2960 

3310 RETURN 

3320' 

3330 ' *** Subroutine for converting time (T) to a special 

3340 '    formatted integer (TIMEC%) used by CAMAC timer. *** 

3350' 

3360 TS=T: TB%=INT((LOG(T/1000))/2.30258): ERFLG%=0 

3370 TBAS=10ATB%: T=T/TBAS: N=0 

3380 IF T<2 GOTO 3400 

3390 N=N+1: T=T/2: GOTO 3380 

3400 J=32*(T-1)+1 

3410 IOVF%=N-OVFTBL%(J) 

3420 IF IOVF%<0 THEN TB%=TB%-1: GOTO 3370 

3430 IF IOVF%>15 THEN TB%=TB%+1: GOTO 3370 

3440 TB%=TB%+6: IF TB%<0 OR TB%>7 THEN PRINT "Time requested outside range": ERFLG%=1: GOTO 3480 

3450 MULT%=MULTBL%0) 

3460TA=TBAS*(2*MULT%+l)*2A(IOVF%+4) 

3470TIMEC%=(128!*MULT%)+(8!*IOVF%)+TB% 

3480 T=TS 

3490 RETURN 

3500' 

3510 ' *** Initialize the solenoid shutter (result: shutter is CLOSED!) *** 

3520' 

3530 N%=DAC#:F%=16:A%=1:D%=32700: GOSUB 2960 

3540 N%=DAC#:F%=16:A%=0:D%=32700: GOSUB 2960 

3550 N%=DAC#:F%=16:A%=0:D%=0: GOSUB 2960 

3560 N%=DAC#:F%=16:A%=0:D%=32700: GOSUB 2960 

3570 RETURN 

3580' 

3590 ' *** Open/close solenoid shutter *** 

3600' 

3610 N%=DAC#:F%=16:A%=A1%:D%=D1%: GOSUB 2960 

3630 RETURN 

3640' 
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3650 ' *** Send Message to Apple via RS232 *** 

3660' 

3670 LOCATE 20,1: PRINT ">» Remote Apple control:" 

3680 LOCATE 21,1: PRINT CMSGS: LOCATE 21,1 

3690 FOR IMSG=1 TO LEN(MSG$): V$=MID$(MSG$,IMSG,1): PRINT #2,V$;: NEXT 

3700 PRINT MSG$: RMSG$="" 

3710 IF EOF(2) THEN 3710 

3720 WHILE NOT EOF(2) 

3730 ASMSG$=INPUT$(1,#2): ASMSG$=CHR$(ASC(ASMSG$)-128) 

3740 IF ASMSG$=CHR$(13) GOTO 3790 

3750 RMSG$=RMSG$+ASMSG$: WEND 

3760 IF ASC(ASMSG$)<>41 THEN GOTO 3710 

3770 RETURN 

3780' 

3790 LOCATE 21,1: PRINT CMSGS;: LOCATE 22,1: PRINT CMSGS; 

3800 PRMSG$=RMSG$: RMSG$="": LOCATE 21,1: PRINT PRMSGS; 

3810 GOTO 3750 

3820' 

3830 FOR IMSG=1 TO LEN(MSG$): V$=MID$(MSG$,IMSG,1): PRINT #2,V$;: NEXT 

3840 PRINT RMSG$="" 

3850 IF EOF(2) THEN 3850 

3860 WHILE NOT EOF(2) 

3870 ASMSG$=INPUT$(1,#2): ASMSG$=CHR$(ASC(ASMSG$)-128) 

3880 IF ASMSG$=CHR$(13) THEN RMSG$="" 

3890 PRINT ASMSGS;: RMSG$=RMSG$+ASMSG$: WEND 

3900 IF ASC(ASMSG$)<>41 THEN GOTO 3850 

3910 RETURN 
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DACTEST.BAS 

10 CLS:PRINT "This program sets the 4 channel DAC to a specified voltage" 

12 PRINT "Paul/Wolfram: 08/17/92": PRINT"" 

20 PRINT "Now loading PC21 and CAMAC I/O drivers..." 

30 GOTO 290 'Load machine language I/O routine 

40 GOSUB 70   ' Set all program variables and reset the PC21 

50 GOTO 510 ' Initialize crate and run main program 

60 '   ****** Set all program variables ****** 

70 ADDRESS% = 768 ' PC21 base address 

80 CONTROL = 96 ' Normal state of PC21 Control Byte 

90 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out) 

100 FAULT = 32 ' Mask for C.B. 5 (restart BMA) 

110 PC21 WRITE = 0! ' Address of PC21 WRITE subroutine 

120 PC21READ = 49! ' Address of PC21READ subroutine 

130 '   ****** PC21 RESET ****** 

140 OUT ADDRESS%+1, (CONTROL OR CRASH) Control Bit 2 high 

150 OUT ADDRESS%+1, ( CONTROL AND NOT CRASH)   Control Bit 2 low 

160 FOR Y=l TO 500:NEXT 'wait for BMA 

170 OUT ADDRESS%+1, ( CONTROL AND NOT FAULT)  Control Bit 5 low 

180 OUT ADDRESS%+1, ( CONTROL OR FAULT) Control Bit 5 high 

190 RETURN 

200 '   ****** PC21 WRITE ****** 

210 BFLAG%=0 

220 IF INSTR(COMMANDX$,"Wl") OR INSTR(COMMANDX$,"wl") THEN BFLAG%=1 

230 IF INSTR(COMMANDX$,"PB") OR INSTR(COMMANDX$,"pb") THEN BFLAG%=1 

240 IF INSTR(COMMANDX$/'XlB") OR INSTR(COMMANDX$,"xlb") THEN BFLAG%=1 

250 COMMANDXS = COMMANDX$ + CHR$(13)    ' Add carriage return to command 

260 CALL PC21WRITE(COMMANDX$/ ADDRESS%)' Execute machine language write 

270 RETURN 

280 '   *** Clear memory and poke in machine language routines *** 

290 GOSUB 460 ' Find data segment above BASICA 

300 OPEN "CODE.BAS" FOR INPUT AS #1    ' Access machine code data file 

310 FOR X = 0! TO 127! 

320 INPUT #1,J ' Install machine code 

330 POKE X,J 

340 NEXT:CLOSE 

350 GOTO 40 

360 '   ****** PC21 READ ****** 

370 ANSWER$=" "+ Reserve string space for response 



157 
380 CALL PC21READ( ANSWERS, ADDRESS0/», BFLAG%)' Execute read 

390 IF BFLAG%=0 THEN RETURN 

400 NUM#=0:FOR X=l TO 4 

410 DIGIT%=ASC(MID$(ANSWER$,X,1)) 

420 NUM#=NUM#+DIGIT%*256A(4-X):NEXT 

430 ANSWER$=STR$(NUM#) 

440 RETURN ' BFLAG% identifies binary report commands 

450 '   ****** Find data segment above BASICA ****** 

460 DEF SEG=0 ' Go to low memory to find BASICA Ioc. 

470 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511 

480 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA 

490 DEF SEG=CAMSEG:RETURN 

500 '   ****** Load CAMAC drivers and initialize crate ****** 

510 BLOAD "CAMIO",128 ' Load drivers into data segment 

520 CAMO=&H80:CAMI=&H86:CAML=&H8C:CAMCL=&H92 ' Driver entry point addresses 

530 CAMO24=&HB0:CAMI24=&HB6:CRATE=&HAA       ' Driver entry point addresses 

540 CC%=1:CALL CRATE(CC%) ' Activate controller in Jl slot 

550 OUT &H240,0 ' Clear high write-only data register 

5601%=64:CALL CAMCL(I%) ' Reset crate 

5701%=1:CALL CAMCL(I%) ' Initialize crate 

580 ' N%=10:F%=17:A%=13:D%=1:GOSUB 630 ' Write timer/sealer LAM mask-generate 

590 ' LAM when channel 1 finishes counting 

591' 

592' 

598 ' set all DAC channels to 0V ! 

599 FOR 1=0 TO 3: N%=12:F%=16:A%=I:D%=0: GOSUB 630: NEXT I 

609 PRINT "EXIT program by CTRL BREAK": PRINT"" 

610 PRINT "DAC channel #:";: INPUT A%: IF (A%>3 OR A%<0) THEN PRINT"": GOTO 610 

611 PRINT "DAC voltage   :";: INPUT DAC: IF (DAC>5 OR DAC<-5) THEN PRINT "Input out of range": GOTO 

611 

612 DAC=DAC*1.000: DAC%=INT(DAC*32767/5) 

620 PRINT "#: ";A%;" DAC:";: PRINT USING "#.###";DAC: PRINT"": D%=DAC%: GOSUB 630 

621 GOTO 610 

630 CALL CAMO(N%,F%,A%,D%,Q%,X%): RETURN 

640 END 



158 

DETPOS.BAS 

„*»«**    Subroutines go here    ************* 

#***** pp91 WRTTF ****** 

10   REM  DETPOS 

20 REM  Wolfram: 08/20/92 moves detector to a specified position! 

21 ' 

30   GOTO 890 ' Jump over subroutines 

31 

32 

33 

40 

41 

42 

50 

51 

60   BFLAG%=0 

70  IF INSTR(COMMANDX$,"Wl") OR INSTR(COMMANDX$/'wl") THEN BFLAG%=1 

80  IF INSTR(COMMANDX$,"PB") OR INSTR(COMMANDX$,"pb") THEN BFLAG%=1 

90  IF INSTR(COMMANDX$,"XlB") OR INSTR(COMMANDX$,"xlb") THEN BFLAG%=1 

100 COMMANDX$=COMMANDX$+CHR$(13)     ' Add carriage return to command 

110 CALL PC21WRITE(COMMANDX$, ADDRESS%) ' Execute machine language write 

120 RETURN 

121 ' 

122 ' 

130 '   ****** PC21 READ ****** 

131 ' 

140 ANSWER$=" "+""    ' Reserve string space for response 

150 CALL PC21READ( ANSWERS, ADDRESS0/», BFLAG%) ' Execute read 

160 IF BFLAG%=0 THEN RETURN 

170 NUM#=0: FOR X=l TO 4 

180 DIGIT%=ASC(MID$(ANSWER$,X,1)) 

190 NUM#=NUM#+DIGIT%*256A(4-X): NEXT 

200 ANSWER$=STR$(NUM#) 

210 RETURN ' BFLAG% identifies binary report commands 

211 ' 

212 ' 

220 '******* Move Detector POS1-POS0 degrees (check for end switch) ****** 

221 ' 

230 DEG=ABS(POSl-POS0): DIR$="+": IF POSl-POS0<0 THEN DIR$="-" 

240 AVTIM=DEG*.15: ENDFLG=0: IF AVTIM<.5 THEN AVTIM=.5 

250 STEPS=INT(DEG*4000/180+.5)       ' Convert degrees to motor steps 
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260 STEPS$=MID$(STR$(STEPS)/2) 

270 DEGAC=STEPS*180/4000: IF DIR$="-" THEN DEGAC=-DEGAC 

280 COMMANDX$="D"+DIR$+STEPS$+" G CR P": GOSUB 60 ' Move & signal when done 

290 T0=TIMER 

300 GOSUB 140: EF LEFT$(ANSWER$,1)=CHR$(13) THEN 330 ' Keep going till end 

310 T1=TIMER:IFT1-T0<AVTIMTHEN300 'If not done after AVTIM, 

320 ENDFLG=1: GOTO 340 'End switch must have been hit. 

330 POS0=POS0+DEGAC 

340 RETURN 

341 ' 

342 ' 

870 '    ******** End Subroutines   ********** 

871 ' 

872 ' 

880 ' ****** Find data segment above BASICA and do initial settings ****** 

881 ' 

890 CLEAR: CLS ' Set all variables to "0" 

891 ' 

900 DEFSEG=0 ' Go to low memory to find BASICA loc. 

910 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511 

920 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA 

930 DEF SEG=CAMSEG 

931 ' 

951 ' 

1120 PRINT: PRINT "DETPOS: Moving the detector to a specified position" 

1130 PRINT: PRINT "Now loading PC21 I/O drivers ..." 

1131' 

1140 '   *** Poke in machine language routinge *** 

1150 OPEN "CODE.BAS" FOR INPUT AS #1    ' Access machine code data file 

1160 FOR X = 0! TO 127! 

1170  INPUT #1,J ' Install machine code 

1180   POKEXJ 

1190 NEXT 

1200 CLOSE #1 

1201' 

1202' 

1210'   ****** Set all program variables ****** 

1211' 

1220 ADDRESS% = 768 ' PC21 base address 

1230 CONTROL = 96 ' Normal state of PC21 Control Byte 

1240 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out) 
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1250 FAULT = 32 ' Mask for C.B. 5 (restart BMA) 

1260 PC21 WRITE = 0! ' Address of PC21WRITE subroutine 

1270 PC21READ = 49! ' Address of PC21READ subroutine 

1271' 

1275 FLGOFF = 2.5 ' Offset for 0 degree detector position! 

1276 MaxAng = 110 ' Maximum detector position due to FIBER !!! 

1277' 

1300 '   ****** PC21 RESET ****** 

1301' 

1310 OUT ADDRESS%+1, (CONTROL OR CRASH) 'Control Bit 2 high 

1320 OUT ADDRESS%+1, (CONTROL AND NOT CRASH) Control Bit 2 low 

1330 FOR Y=l TO 500: NEXT 'wait for BMA 

1340 OUT ADDRESS%+1, (CONTROL AND NOT FAULT) Control Bit 5 low 

1350 OUT ADDRESS%+1, (CONTROL OR FAULT) 'Control Bit 5 high 

1351' 

1450 '   ****** Program Begins Here ******* 

1451' 

1460 '   >» Initialization <« 

1461' 

1490 '   ****** Send Detector to HOME position  ******* 

1491 ' 

1500 PRINT "Moving detector to HOME position!" 

1510 COMMANDX$="FSBl FSC1 MN Al V.l": GOSUB 60    'Moving detector to 0 degree! 

1520 POS0=0: POSl=2: GOSUB 230 'Make sure not on an endpoint 

1530 POS0=0: POS1=-10: GOSUB 230 

1540 IF ENDFLG=0 THEN 1530 

1550 POS0=0: POSl=FLGOFF: GOSUB 230: POS0=0     'compensate for offset 

1551' 

1781' 

1790 '   >» Enter parameter for measurement <« 

1791' 

1870 ANG0=0 

1880 PRINT"": PRINT "Desired detector position :";: INPUT ANG1 

1890 IF ANG1 > MaxAng THEN PRINT "Position out of limit!!!": GOTO 1880 

1930 PRINT "Moving detector to ";ANG1;" degree" 

1940 POS0=ANG0: POSl=ANGl: GOSUB 230 

1950 IF ENDFLGoO THEN PRINT "ERROR! Limit switch hit!": STOP 

1970 ANG0=ANG1: GOTO 1880 

1980 POS0=ANG0: POSl=ANGl: GOSUB 230 

2612' 

2620 CLOSE 
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2630 END 
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FREQSCAN.BAS 

10   REM  FREQSCANV1.0,(MOD2CNT) modified 8/13/90 to increase DELAY(3)   (TW) 

20   REM  Graphic boundaries and flag offset are set at 910-920   (TW) 

30  REM  modified 08/20/92: solenoid operation, waitdelay  (WM) 

40  REM 08/27/92: program structure  (WM) 

50   REM 04/30/93: changed check for frequency  (WM) 

60  REM  files needed    : hbasic.exe, basica.com, code.bas, camio.bas 

70   ' 

80 ' *** Find data segment above BASICA *** 

90 ' 

100 CLEAR: CLS ' Set all variables to "0" 

110 DEFSEG=0 ' Go to low memory to find BASICA loc. 

120 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511 

130 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA 

140 DEF SEG=CAMSEG 

150 ' 

160 ' *** Open COM channel to Apple Comp. *** 

170 ' 

180 OPEN "COM1:9600,N,8,1,CS3000,DS3000" AS #2 

190 ' 

200 ' *** Dimension of variables *** 

210 ' 

220 DIMOVFTBL%(32),MULTBL%(32),DAC0(3),DACl(3),DAC2(3),DELAY(3),SIG(3) 

230 DIM WVMTR#(3),D24%(2),LABEL$(3) 

240 DATA 4,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9,5,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9 

250 DATA 0,16,8,17,4,18,9,19,2,20,10,21,5,22,11,23,1,24,12,25,6,26,13,27 

260 DATA 3,28,14,29,7,30,15,31 

270 FOR 1=1 TO 32: READ OVFTBL%(I): NEXT   'Load in tables for conversion of 

280 FOR 1=1 TO 32: READ MULTBL%(I): NEXT   'time. 

290 ' 

300 ' *** Setting parameters *** 

310 ' 

320 PMIN=-50: PMAX=5000 

330 PFAC=(PMAX-PMIN)*2 

340 XM=600: YM=400: YM2=YM/2     'XM=719: YM=347: YM2=YM/2 

350 ' 

360 ' *** Program header *** 

370 ' 

380 CLS: 
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390 ' 

400 PRINT "FREQSCAN (1.0)": PRINT"" 

410 PRINT "This program counts number of photons for a user-specified time as" 

420 PRINT "a function of the LASER FREQUENCY with the ion beam on hitting the" 

430 PRINT "target and the laser beam off, then counts for an equal time with" 

440 PRINT "the ion beam off and the laser beam on and then again with ion beam" 

450 PRINT "and laser beam on and stores all three counts on to disk." 

460 BEEP: PRINT"": PRINT "Hit any key when ready ..." 

470 A$=INKEY$: IF A$="" THEN 470 

480 ' 

490 ' *** Poke in machine language routinge *** 

500 ' 

510 PRINT"": PRINT "Loading PC21 & CAMAC I/O drivers ..." 

520 ' 

530 OPEN "C: \ BASICDIRX NEW\ CODE.BAS" FOR INPUT AS #1    ' Access machine code data file 

540 FOR X = 0! TO 127! 

550   INPUT #1, J ' Install machine code 

560   POKEXJ 

570 NEXT 

580 CLOSE #1 

590 ' 

600 ' *** Set all program variables *** 

610 ' 

620 ADDRESS% = 768 ' PC21 base address 

630 CONTROL = 96 ' Normal state of PC21 Control Byte 

640 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out) 

650 FAULT = 32 ' Mask for C.B. 5 (restart BMA) 

660 PC21WRITE = 0! ' Address of PC21 WRITE subroutine 

670 PC21READ = 49! ' Address of PC21READ subroutine 

680 ' 

690 DAC# = 12 ' DAC module in CAMAC slot #12 

700 ' ch#: 0:shutter, l:shutter, 2:ion beam shutter 

710 ' 3:notused 

720 TTM# = 10 ' TIMER/SCALER module in CAMAC slot #10 

730 DELAY1# = 1 ' Delaytime for solenoid shutter in sec. 

740 DELAY2# = 1 ' Delaytime for ion beam response in sec. 

750 ' 

760 DATDIR$ = "C:\SPUTTER\FREQDAT\"    ' Directory for data files 

770 ' 

780 CMSG$=" "     'ClearString 

790 ' 
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800 FLGOFF = 2.5 ' Offset for 0 degree position 

810 MAXANG = 110 ' Maximum position of detector due to FIBER!!! 

820 ' 

830 ' *** PC21 RESET *** 

840 ' 

850 OUT ADDRESS%+1, (CONTROL OR CRASH) ' Control Bit 2 high 

860 OUT ADDRESS%+1, ( CONTROL AND NOT CRASH) ' Control Bit 2 low 

870 FOR Y=l TO 500: NEXT ' Wait for BMA 

880 OUT ADDRESS%+1, ( CONTROL AND NOT FAULT) ' Control Bit 5 low 

890 OUT ADDRESS%+1, ( CONTROL OR FAULT) ' Control Bit 5 high 

900 ' 

910 ' *** Load CAMAC drivers and initialize crate *** 

920 ' 

930 BLOAD "C:\BASICDIR\NEW\CAMIO",128        ' Load drivers into data segment 

940 CAMO=&H80:CAMI=&H86:CAML=&H8C:CAMCL=&H92 ' Driver entry point addresses 

950 CAMO24=&HB0:CAMI24=&HB6:CRATE=&HAA       ' Driver entry point addresses 

960 CC%=1: CALL CRATE(CC%) ' Activate controller in Jl slot 

970 OUT&H240,0 ' Clear high write-only data register 

980 I%=64: CALL CAMCL(I%) ' Reset crate 

990 I%=1: CALL CAMCL(I%) ' Initialize crate 

1000 N%=TIM#:F%=17:A%=13:D%=l:GOSUB 3300   ' Write timer/sealer LAM mask-generate 

1010 ' LAM when channel 1 finishes counting 

1020 GOSUB3410 

1030 ' 

1040 ' *** Initialization *** 

1050 ' 

1060 A1%=0:D1%=6540: GOSUB 3870    ' Laser beam shutter should be closed! 

1070 PRINT "Laser beam shutter:   CLOSED!" 

1080 N%=DAC#:F%=16:A%=2:D%=32700: GOSUB 3300 ' Ion beam shutter should be open! 

1090 PRINT "Ion beam shutter :   OPEN!" 

1100 ' 

1110 PRINT "Detector :  Moving to 0 degree!" 

1120 COMMAND$="FSBl FSC1 MN Al V.l": GOSUB 2950  ' Moving detector to 0 degree! 

1130 POS0=0: POSl=2: GOSUB 3150 ' Make sure not on an endpoint 

1140 POS0=0: POS1=-10: GOSUB 3150 

1150 IF ENDFLG=0 THEN 1140 

1160 POS0=0: POSl=FLGOFF: GOSUB 3150: POS0=0     ' Compensate for offset 

1170 ' 

1180 ' *** Define data file name *** 

1190 ' 

1200 PRINT"" 
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1210 BEEP: PRINT "Data file name:";: INPUT FILNAM$ 

1220 ON ERROR GOTO 1310 

1230 OPEN DATDIR$+FILNAM$ FOR INPUT AS #1 ' Test to see if file already exists. 

1240 ' File exists. Ask user what to do!! 

1250 BEEP: BEEP 

1260 PRINT "File exists! Continue [y/n]: ? " 

1270 V$=INKEY$: IF V$="" THEN GOTO 1270 

1280 IF V$="Y" OR V$="y" THEN GOTO 1320 ' Overwrite existing file. 

1290 IF V$="N" OR V$="n" THEN GOTO 1210   ' Get a new name for file. 

1300 GOTO 1270 

1310 RESUME 1320 ' File nonexistent. Proceed. 

1320 ON ERROR GOTO 0 

1330 CLOSE #1 ' Close temporary input file. 

1340 OPEN DATDIR$+FILNAM$ FOR OUTPUT AS #1 ' Open output file. 

1350' 

1360 ' *** Print file header *»* 

1370' 

1380 PRINT #l,"Data stored by FREQSCAN1.0 on ";DATE$;" at ";TTME$; ". Format is" 

1390 PRINT #1," I Header$ I 

1400 PRINT #1," I #Sec/point-#Spec-E(start)-E(width)-#Steps-E/step-DetPos-DarkCnt I" 

1410 PRINT #l,"Data - #Spec * #Steps * I All on-Laser on-Ion beam on I": PRINT #1, 

1430 PRINT "File header:";: INPUT HDR$ 

1440 PRINT #1,HDR$ 

1450' 

1460 ' *** Enter parameter for measurement *** 

1470' 

1480 BEEP: PRINT"": PRINT "Integration time (> 1 sec):";: INPUT ITIM 

1490 IF ITIM<1 THEN ITIM=1 

1500 IF rnM>10000! THEN BEEP: BEEP: PRINT "Out of Range": GOTO 1480: PRINT"" 

1510 T=ITIM: GOSUB 3700: TSAVE%=TIMEC% 

1520 MSG$=" sec integration.": PRINT #1,STR$(T); 

1530 PRINT "Enter # spectra (1-100) :";: INPUT NSPEC% 

1540 IF NSPEC%<1 OR NSPEC%>100 THEN 1530 

1550 PRINT #1,NSPEC%; 

1560 PRINT "Detector position        :";: INPUT ANG 

1570 IF ANG > MAXANG THEN PRINT "Position out of limit!!!": GOTO 1560 

1580 PRINT "Starting energy (cmA-l)   :";: INPUT ESTART$ 

1590 NRG#=VAL(ESTART$)' NRG# is the laser energy 

1600 MSG$="GOK"+ESTART$+CHR$(13): GOSUB 4080: PRINT Tell AUTOSCAN to go there 

1610 PRINT "Enter # of cmA-l to scan :";: INPUT SCAN 

1620 SCAN$=STR$(SCAN) 



166 
1630 PRINT "Enter increments in MHz   :";: INPUT INC 

1640 INC=INC/30000: INC$=STR$(INC) ' Convert INC into cmA-l 

1650 NINC=INT((SCAN/INC)+.5) ' NINC is total # of incremental steps to scan 

1660 PRINT #1,ESTART$;SCAN$;NINC+1;INC,ANG; 

1670 PRINT "Moving detector to ";ANG;" degree." 

1680 POS0=0: POSl=ANG: GOSUB 3150 

1690 IF ENDFLGoO THEN BEEP: BEEP: BEEP: PRINT "ERROR! Limit switch hit!": STOP 

1700 ' 

1710 ' *** Initialize plotting on the screen *** 

1720' 

1730 CLS: SCREEN 2: DRAW "BM 0,0 R=XM;D=YM2;L=XM;U=YM2;" 

1740 LOCATE 15,1: PRINT ESTART$: LOCATE 16,1: PRINT ANG 

1750 LOCATE 2,50: PRINT FILNAM$ 

1760 DELX=XM/NINC 'DELX used for plotting 

1770' 

1780 ' *** Starting the data collection *** 

1790' 

1800 DAC0(1)=0:DAC0(2)=6540:DAC0(3)=0 ' Settings for DAC 

1810DAC2(1)=0:DAC2(2)=32700:DAC2(3)=32700 

1820 TDEL(1)=DELAY2#:TDEL(2)=DELAY2#:TDEL(3)=DELAY1# ' Setting delay after solenoid and ion beam 

1830 LABEL$(l)="Laser beam ON":LABEL$(2)="Ion beam ON":LABEL$(3)="All ON" 

1840' 

1850 LOCATE 18,30: PRINT "Collecting dark counts for 5 sec!" 

1860 N%=DAC#:F%=16:A%=2:D%=0: GOSUB 3300     ' Ion beam shutter CLOSED! 

1870 A1%=0:D1%=6540: GOSUB 3870 ' Solenoid shutter CLOSED! 

1880 T=DELAY2#: GOSUB 3700: GOSUB 3550        ' Time delay after solenoid operation! 

1890 T=5: GOSUB 3700: GOSUB 3460 ' 5 sec dark count collection! 

1900 SIGNAL#=D24%(1) AND 32767: IF D24%(1)<0 THEN SIGNALS = SIGNAL» +32768* 

1910 FOR 1=1 TO D24%(2): SIGNAL#=SIGNAL# +65536#: NEXT I 

1920 DRKCNT=cint(SIGNAL#/5): GOSUB 3630: PRINT #1,DRKCNT 

1930 LOCATE 17,1: PRINT DRKCNT 

1940 LOCATE 18,30: PRINT" 

1950' 

1960 ' *** NSP data collection loop *** 

1970' 

1980 NLASINC=0 

1990 FOR NSP=1 TO NSPEC% ' Start scans 

2000  CLS: SCREEN 2: DRAW "BM 0,0 R=XM;D=YM2;L=XM;U=YM2;" 

2010  LOCATE 15,1: PRINT ESTART$: LOCATE 16,1: PRINT ANG 

2020   LOCATE 2,50: PRINT FILNAM$ 

2030   ' LOCATE 2,3: PRINT "spec#";NSP 
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2040   '**** 

2050   X0%=0 ' Initialize x-axis of plot 

2060  IF NSP= 1 GOTO 2270 ' If not first scan 

2070  MSG$= "DELK-"+SCAN$+CHR$(13): GOSUB 3920 ' then must reset laser, 

2080   NRG#= VAL(ESTARTS) ' reset energy variable, 

2090  MSG$= "READ"+CHR$(13): GOSUB 3920        ' and verify wavelength. 

2100  WVMTR#= VAL(MID$(RMSG$,2,10)) 

2110   DELNRG= WVMTR#-NRG# 

2120  IF ABS(DELNRG)>.006 THEN BEEP: MSG$= "GOK"+STR$(NRG#)+CHR$(13): GOSUB 3920 

2130  AVDEL=0 

2140   FOR 11=1 TO 3 

2150  MSG$= "READ"+CHR$(13): GOSUB 3920 

2160  WVMTR#= VAL(MID$(RMSG$,2,10)): PRINT WVMTR# 

2170   DELNRG= WVMTR#-NRG#: PRINT DELNRG 

2180  IF ABS(DELNRG)<=.001 THEN GOTO 2260 

2190  IF ABS(DELNRG)>.001 THEN AVDEL= AVDEL+DELNRG 

2200   NEXT II 

2210   AVDEL= AVDEL/3!: PRINT AVDEL 

2220  MSG$="DELK"+STR$(-AVDEL)+CHR$(13): GOSUB 3920 

2230   GOTO 2140 

2240 '**** 

2250 ' 

2260 SUM=0:CNT=0 

2270  FOR INCCNT=0 TO NINC ' Begin loop incrementing angle. 

2280    LOCATE 2,3: PRINT "spec#";NSP 

2290    IF INCCNT=0 THEN GOTO 2490 ' Don't need increment 1st time. 

2300    MSG$="DELK"+INC$+CHR$(13): GOSUB 3920: NRG#=NRG#+INC ' Tell AUTOSCAN 

2310    ' to increment frequency, update NRG 

2320    NLASINC=NLASINC+1: IF NLASINC<10 THEN GOTO 2540 ' After 10 increments 

2330    '**** 

2340    NLASINC=0: MSG$="READ"+CHR$(13): GOSUB 3920    ' check wavemeter to 

2350    WVMTR#=VAL(MID$(RMSG$,2,10)) 

2360    DELNRG=WVMTR#-NRG# 

2370    IF ABS(DELNRG)>.006 THEN BEEP: MSG$="GOK"+STR$(NRG#)+CHR$(13): GOSUB 3920 

2380    AVDEL= 0 

2390    FOR 11=1 TO 3 

2400    MSG$= "READ"+CHR$(13): GOSUB 3920 

2410    WVMTR#=VAL(MID$(RMSG$,2,10)) 

2420    DELNRG= WVMTR#-NRG# 

2430    IF ABS(DELNRG)<=.001 THEN GOTO 2500 

2440    IF ABS(DELNRG)>.001 THEN AVDEL=AVDEL+DELNRG 
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2450    NEXT II 

2460    AVDEL=AVDEL/3!: PRINT AVDEL 

2470    MSG$="DELK"+STR$(-AVDEL)+CHR$(13): GOSUB 3920 

2480     GOTO 2380 

2490    ""** 

2500    LOCATE 18,1: PRINT " 

2510    LOCATE 18,1: PRINT USING "Energy = #######.###";NRG# 

2520     ' 

2530    CNT=0: SUM=0 

2540    FOR DACSW=1 TO 3 

2550      LOCATE 18,30: PRINT" 

2560      LOCATE 18,30: PRINT LABEL$(DACSW) 

2570      N%=DAC#:F%=16:A%=2:D%=DAC2(DACSW): GOSUB 3300 ' Set DAC on/off depending on 

2580      A1%=0:D1%=DAC0(DACSW): GOSUB 3870 ' Dacsw 

2590    LOCATE 18,1: PRINT" 

2600    LOCATE 18,1: PRINT USING "Energy = #######.###";NRG# 

2610      T=TDEL(DACSW): GOSUB 3700: GOSUB 3550      ' Wait for time delay! 

2620      TIMEC%=TSAVE%: GOSUB 3460 ' now Count for TSAVE% 

2630      SIGNAL#=D24%(1) AND 32767: IF D24%(1)<0 THEN SIGNAL#=SIGNAL#+32768# 

2640      FOR 1=1 TO D24%(2): SIGNAL#=SIGNAL#+65536#: NEXT I 

2650      SIG(DACSW)=SIGNAL#/ITIM : GOSUB 3630 

2660    NEXT DACSW 

2670     ' 

2680    '***LASERON=LASERON+SIG(l): IONON=IONON+SIG(2): ALLON=ALLON+SIG(3) 

2690    ' NEXT NC ' Save signal 

2700    '*"DELSIG=ALLON-LASERON-IONON+DRKCNT: PRINT #l,ALLON,LASERON,IONON 

2710    DELSIG=SIG(3)-SIG(1)-SIG(2)+DRKCNT: PRINT #1, SIG(3),SIG(1),SIG(2),DELSIG 

2720    LOCATE 19,1: PRINT " 

2730    '»"LOCATE 19,1: PRINT ALLON;"-";LASERON;"-";IONON;"+";DRKCNT;"=";DELSIG;':LPRINT 

POS0,DELSIG 

2740    LOCATE 19,1: PRINT INCCNT;": ";SIG(3);"-";SIG(1);"-";SIG(2);"+";DRKCNT;"=";DELSIG;':LPRINT 

POS0,DELSIG 

2750    YP%=(YM/PFAC)*(PMAX-(DELSIG)/ITTM): XP%=INCCNFDELX: IF YP%>YM2 THEN YP%=YM2 

2760     DRAW "BM=X0%;,=Y0%;": DRAW "M=XP%;,=YP%;": Y0%=YP%: X0%=XP% 

2770    SIG(1)=0: SIG(2)=0: SIG(3)=0 'Reset accumulated signals for next frequency 

2780   NEXT INCCNT 

2790   ' 

2800   BEEP 

2810  PRINT #l,"xxxx" 

2820 NEXT NSP 

2830' 
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2840 CLOSE 

2850 LOCATE 23,1: BEEP: BEEP: PRINT ">»(EXIT Freqscanl.O with 'E')" 

2860 A$=INKEY$: IF (A$="E") OR (A$="e") THEN CLS ELSE 2860 

2870 END 

2880 ' 

2890' 

2900 ' *** SUBROUTINES ARE LOCATED HERE !!! "* 

2910' 

2920 ' *** PC21 WRITE *** 

2930' 

2940 BFLAG%=0 

2950 IF INSTR(COMMAND$,"Wl") OR INSTR(COMMAND$,"wl") THEN BFLAG%=1 

2960 IF INSTR(COMMAND$/'PB") OR INSTR(COMMAND$,"pb") THEN BFLAG%=1 

2970 IF INSTR(COMMAND$,"XlB") OR INSTR(COMMAND$/'xlb") THEN BFLAG%=1 

2980 COMMANDS = COMMANDS + CHR$(13)     ' Add carriage return to command 

2990 CALL PC21WRITE(COMMAND$, ADDRESS%) ' Execute machine language write 

3000 RETURN 

3010' 

3020 ' *** PC21 READ *** 

3030' 

3040 ANSWER$=" "+""    ' Reserve string space for response 

3050 CALL PC21READ( ANSWERS, ADDRESS%, BFLAG%) ' Execute read 

3060 IF BFLAG%=0 THEN RETURN 

3070 NUM#=0: FOR X=l TO 4 

3080DIGIT%=ASC(MID$(ANSWER$,X,1)) 

3090 NUM#=NUM#+DIGIT%*256A(4-X): NEXT 

3100 ANSWERS=STR$(NUM#) 

3110 RETURN ' BFLAG% identifies binary report commands 

3120' 

3130 ' *** Move Detector POS1-POS0 degrees (check for end switch) *** 

3140 ' 

3150 DEG=ABS(POSl-POS0): DIRS="+": IF POSl-POS0<0 THEN DIR$="-" 

3160 AVTIM=DEG*.15: ENDFLG=0: IF AVTIM<.5 THEN AVTIM=.5 

3170 STEPS=INT(DEG*4000/180+.5)       * Convert degrees to motor steps 

3180 STEPS$=MID$(STR$(STEPS),2) 

3190 DEGAC=STEPS*180/4000: IF DIR$="-" THEN DEGAC=-DEGAC 

3200 COMMAND$="D"+DIR$+STEPS$+" G CR P": GOSUB 2950 ' Move & signal when done 

3210 T0=TTMER 

3220 GOSUB 3040: IF LEFT$(ANSWER$,1)=CHR$(13) THEN 3250 ' Keep going till end 

3230 T1=TIMER: IF T1-T0<AVTIM THEN 3220 ' If not done after AVTTM, 

3240 ENDFLG=1: GOTO 3260 ' End switch must have been hit. 
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3250 POS0=POS0+DEGAC 

3260 RETURN 

3270' 

3280 ' ** * Main WRITE /READ Subroutines to C AMAC *** 

3290 ' 

3300 CALL CAMO(N%/F%,A%,D7o,Q%/X%) 

3310 RETURN 

3320' 

3330 CALL CAMI24(N%,F%,A%,D24%(1)/Q%,X%) 

3340 RETURN 

3350' 

3360 CALL CAMI(N%/F%/A%,D%/Q%,X%) 

3370 RETURN 

3380' 

3390 ' *** initialize DAC, put all channels (0...3) to OV! *** 

3400 ' 

3410 FOR 1=0 TO 3: N%=DAC#:F%=16:A%=I:D%=0: GOSUB 3300: NEXT 

3420 RETURN 

3430 ' 

3440 ' "* Set timer/sealer *** 

3450' 

3460 N%=TIM#:F%=17:Ao/o=0:D%=TIMEC%: GOSUB 3300    ' D% must contain time. 

3470 N%=TIM#:F%=17:A%=4:D%=1: GOSUB 3300        ' Start counting 

3480 CALL CAML(L%):IF L%=0 THEN 3480 ' Wait for count to end 

3490 N%=TIM#:F%=23:A%=12:D%=1: GOSUB 3300       ' Clear timer LAM 

3500 N%=TIM#:F%=0: A%=1: GOSUB 3330: GOTO 3630    ' Read sealer 

3510 RETURN 

3520' 

3530 ' *** Wait delay *** 

3540' 

3550 N%=TIM#:F%=17:A%=0:D%=TIMEC%: GOSUB 3300   ' D% must contain time! 

3560 N%=TIM#:F%=17:A%=4:D%=1: GOSUB 3300        ' Start wait delay 

3570 CALL CAML(L%): IF L%=0 THEN 3570 ' Wait for time to end 

3580 N%=TTM#:F%=23:A%=12:D%=1: GOSUB 3300: GOTO 3630 ' Clear timer LAM 

3590 RETURN 

3600 ' 

3610 ' *** Clear timer/sealer *** 

3620 ' 

3630 N%=TIM#:F%=9:A%=0:D%=0: GOSUB 3300 

3640 N%=TTM#:F%=9:A%=1:D%=0: GOSUB 3300 

3650 RETURN 
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3660' 

3670 ' *** Subroutine for converting time (T) to a special 

3680 '    formatted integer (TTMEC%) used by CAMAC timer. *'* 

3690' 

3700 TS=T: TB%=INT((LOG(T/1000))/2.30258): ERFLG%=0 

3710 TBAS=10ATB%: T=T/TBAS: N=0 

3720 IF T<2 GOTO 3740 

3730 N=N+1: T=T/2: GOTO 3720 

3740 J=32*(T-1)+1 

3750 IOVF%=N-OVFTBL%(J) 

3760 IF IOVF%<0 THEN TB%=TB%-1: GOTO 3710 

3770 IF IOVF%>15 THEN TB%=TB%+1: GOTO 3710 

3780 TB%=TB%+6: IF TB%<0 OR TB%>7 THEN PRINT "Time requested outside range": ERFLG%=1: GOTO 3820 

3790 MULT%=MULTBL%0) 

3800TA=TBAS*(2*MULT%+l)*2A(IOVF%+4) 

3810TIMEC%=(128!*MULT%)+(8!*IOVF%)+TB% 

3820 T=TS 

3830 RETURN 

3840' 

3850 ' *** Open/close solenoid shutter *** 

3860' 

3870 N%=DAC#:F%=16:A%=A1%:D%=D1%: GOSUB 3300 

3880 RETURN 

3890' 

3900 ' *** Send Message to Apple via RS232 *** 

3910' 

3920 LOCATE 20,1: PRINT ">» Remote Apple control:" 

3930 LOCATE 21,1: PRINT CMSG$: LOCATE 21,1 

3940 FOR IMSG=1 TO LEN(MSG$): V$=MID$(MSG$,IMSG,1): PRINT #2,V$;: NEXT 

3950 PRINT MSG$: RMSG$="" 

3960 IF EOF(2) THEN 3960 

3970 WHILE NOT EOF(2) 

3980 ASMSG$=INPUT$(1,#2): ASMSG$=CHR$(ASC(ASMSG$)-128) 

3990 IF ASMSG$=CHR$(13) GOTO 4040 

4000 RMSG$=RMSG$+ASMSG$: WEND 

4010 IF ASC(ASMSG$)<>41 THEN GOTO 3960 

4020 RETURN 

4030' 

4040 LOCATE 22,1: PRINT CMSG$; 

4050 PRMSG$=RMSG$: RMSG$="": LOCATE 22,1: PRINT PRMSG$; 

4060 GOTO 4000 
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4070' 

4080 FOR IMSG=1 TO LEN(MSG$): V$=MID$(MSG$,IMSG,1): PRINT #2,V$;: NEXT 

4090 PRINT RMSG$="" 

4100 IF EOF(2) THEN 4100 

4110 WHILE NOT EOF(2) 

4120 ASMSG$=INPUT$(l/#2): ASMSG$=CHR$(ASC(ASMSG$)-128) 

4130 IF ASMSG$=CHR$(13) THEN RMSG$="" 

4140 PRINT ASMSG$;: RMSG$=RMSG$+ASMSG$: WEND 

4150 IF ASC(ASMSG$)<>41 THEN GOTO 4100 

4160 RETURN 
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MASPLOT.BAS 

10 REM  MASPLOT: plotting of mass spectra 

11 REM  V1.0:02/04/93 

13 REM  files needed     : hbasic.exe, basica.com, code.bas, camio.bas 

14 ' 

15 REM  Program structure from MASSPEC.BAS !!! 

16 ' 

100 '  ****** Find data segment above BASICA ****** 

101 ' 

110 CLEAR: CLS ' Set all variables to "0" 

120 DEFSEG=0 ' Go to low memory to find BASICA loc. 

130 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511 

140 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA 

150 DEF SEG=CAMSEG 

151 ' 

200 ' *** Dimension of variables *** 

201 ' 

210 DIM XVal(1000),YVal(1000) 

211 ' 

280 ' *** Setting parameters *** 

281 ' 

290 XPix=600: YPix=250: YNeg=-0.1: YPos=3.5: YScale=1.0 

300 YFac=YPix/(1.0*(-YNeg+YPos)) ' YFac for y-axis 

301 ' 

320 ' *** Program header *** 

321 ' 

340 PRINT "MASPLOT (1.0)": PRINT"" 

350 PRINT "This program is plotting mass spec" 

351 ' 

400 ' *** Poke in machine language routinge *** 

401 ' 

410 OPEN "C:\BASICDIR\NEW\CODE.BAS" FOR INPUT AS #1    ' Access machine code data file 

420 FOR X = 0! TO 127! 

430   INPUT #1, J ' Install machine code 

440   POKE XJ 

450 NEXT 

460 CLOSE« 

461 ' 

500 ' *** Set all program variables *** 
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' PC21 base address 

' Normal state of PC21 Control Byte 

' Mask for Control Bit 2 (BMA time-out) 

' Mask for C.B. 5 (restart BMA) 

' Address of PC21WRITE subroutine 

' Address of PC21READ subroutine 

' ADC module in CAMAC slot #9 

' DAC module in CAMAC slot #12 

ch#0,l,2:+/-5V 

3: + 10V (scan mass spec) 

' TIMER/SCALER module in CAMAC slot #10 

' Delaytime for DAC respnse in sec. 

501 ' 

510 ADDRESS% = 768 

520 CONTROL = 96 

530 CRASH = 4 

540 FAULT = 32 

550 PC21WRITE = 0! 

560 PC21READ = 49! 

561 ' 

570 ADC#=9 

580 DAC# = 12 

581 ' 

582 ' 

590 TIM# = 10 

600 DELAY* = 0.025 

601 ' 

610 DATDIRS = "C:\MASSDATV    ' Directory for data files 

615 ' 

620 UMassFac = 0.0333 ' Conversion factor mass -> DAC voltage 

630 NADC = 2 '# of measurements done by ADC 

631 ' 

1000 ' *** Open data file *** 

1001' 

1020 PRINT"" 

1030 BEEP: PRINT "Data file name:";: INPUT FILNAM$ 

1040 ON ERROR GOTO 1070 

1050 OPEN DATDIR$+FILNAM$ FOR INPUT AS #1 ' Test to see if file already exists. 

1051' File exists. Ask user what to do!! 

1055 GOTO 1140 

1060 BEEP: BEEP 

1070 PRINT "File does'nt exists!": GOTO 1030 

1080 'WV$=INKEY$: IF V$="" THEN GOTO 1080 

1090 ,***IF V$="Y" OR V$="y" THEN GOTO 1130    ' Overwrite existing file. 

1100 '***IF V$="N" OR V$="n" THEN GOTO 1030    ' Get a new name for file. 

1110 ""»GOTO 1080 

1120 RESUME 1130 ' File nonexistent. Proceed. 

1130 ON ERROR GOTO 0 

1140 '"'CLOSE #1 ' Close temporary input file. 

1150 ""'OPEN DATDIR$+FILNAM$ FOR INPUT AS #1 ' Open output file. 

1151' 

1200 ' *** Enter parameter for measurement *** 

1201' 
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1210 BEEP: PRINT"": PRINT "YScale:";: INPUT YScale 

1271' 

1300 ' *** Read data *** 

1301' 

1310 FOR i=l TO 3 : LINE INPUT #1, A$: NEXT i       ' Skip first 3 lines! 

1320 INPUT #1, IntNum 

1330 FOR i=l TO IntNum: 

1340  INPUT #1, XVal(i),YVal(i) 

1345'*" PRINT XVal(i); YVal(i) 

1350 NEXT i 

1351' 

1400 ' *** Initialize plotting *** 

1401' 

1410 CLS: SCREEN 2: DRAW "BM0,0 R=XPix;D=YPix;L=XPix;U=YPix;" 

1420 '*** LOCATE 20,1: PRINT LowMass: LOCATE 21,1: PRINT HighMass 

1430 LOCATE 2,50: PRINT FILNAM$ 

1434 DifMass=XVal(IntNum)-XVal(l) 

1435 XFac=XPix/(1.0*DifMass) ' XFac for x-axis 

1440 X0%=0.0 

1445 ' 

1700 ' *** Plotting data *** 

1701' 

1705 X0%=0.0 

1706 ' 

1710 FOR ii=l TO IntNum 

1711' 

1720   DRAW "BM=X0%;,=Y0%;" 

1730   YP%=YPix-(YVal(ii)-YNeg)*YFac*YScale: XP%=(XVal(ii)-XVal(l))*XFac 

1740   IF YVal(ii)>YPos THEN YP%=0 

1750   IF YVal(ii)<YNeg THEN YP%=YPix 

1760  Y0%=YP% 

1770   DRAW "M=X0%;,=Y0%;": DRAW "M=X0%;,=YP%;": DRAW "M=XP%;,=YP%;": X0%=XP% 

1771' 

1780 NEXT ii 

1781' 

1790 LOCATE 22,1: PRINT" 

1800 PRINT "Rescale Plot:";: INPUT YScale 

1810 IF YScale > 1.0 THEN GOTO 1705 

1820 LOCATE 23,1: BEEP: BEEP: PRINT ">»(EXIT MasPlotl.O with 'E')" 

1830 A$=INKEY$: IF (A$="E") OR (A$="e") THEN CLS ELSE 1830 

1831' 
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1900 CLOSE ' Close OutputFile 

1901' 

1910 END 

1911' 

1912' 

3000 ' *** SUBROUTINES ARE LOCATED HERE !!! *** 

3001' 

3010 ' *** PC21 WRITE *** 

3011" 

3020 BFLAG%=0 

3030 IF INSTR(COMMAND$,"Wl") OR INSTR(COMMAND$,"wl") THEN BFLAG%=1 

3040 IF INSTR(COMMAND$,"PB") OR INSTR(COMMAND$,"pb") THEN BFLAG%=1 

3050 IF INSTR(COMMAND$/'XlB") OR INSTR(COMMAND$,"xlb") THEN BFLAG%=1 

3060 COMMANDS = COMMANDS + CHR$(13)     ' Add carriage return to command 

3070 CALL PC21WRITE(COMMAND$/ ADDRESS%) ' Execute machine language write 

3080 RETURN 

3081' 

3100 ' *** PC21 READ *** 

3101' 

3110 ANSWER$=" "+ Reserve string space for response 

3120 CALL PC21READ( ANSWERS, ADDRESS%, BFLAG%) ' Execute read 

3130 IF BFLAG%=0 THEN RETURN 

3140 NUM#=0: FOR X=l TO 4 

3150DIGIT%=ASC(MID$(ANSWER$,X,1)) 

3160 NUM#=NUM#+DIGIT%*256A(4-X): NEXT 

3170 ANSWER$=STR$(NUM#) 

3180 RETURN ' BFLAG% identifies binary report commands 

3181' 
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MASSPEC.BAS 

10 REM  MASSPEC: recording of mass spectra 

11 REM  V1.0: 02/04/93 

13 REM  files needed    : hbasic.exe, basica.com, code.bas, camio.bas 

14 ' 

15 REM  Program structure from ANGSCAN.BAS !!! 

16 ' 

100 '   ****** Find data segment above BASICA ****** 

101 ' 

110 CLEAR: CLS ' Set all variables to "0" 

120 DEFSEG=0 ' Go to low memory to find BASICA loc. 

130 BDATSEG=PEEK(&H510)+256*PEEK(&H511)' BASICA data segment is in &H510-511 

140 CAMSEG=BDATSEG+&H2000 ' Find next data segment after BASICA 

150 DEF SEG=CAMSEG 

151 ' 

200 ' *** Dimension of variables *** 

201 ' 

210 DIM YVal(1000) 

211 ' 

280 ' *** Setting parameters *** 

281 ' 

290 XPix=600: YPix=250: YNeg=-0.1: YPos=3.5: YScale=1.0 

300 YFac=YPix/(1.0*(-YNeg+YPos)) ' YFac for y-axis 

301 ' 

320 ' *** Program header *** 

321 ' 

340 PRINT "MASSPEC (1.0)": PRINT"" 

350 PRINT "This program is taking mass spec" 

351 ' 

400 ' *** Poke in machine language routinge *** 

401 ' 

410 OPEN "C:\BASICDIR\NEW\CODE.BAS" FOR INPUT AS #1    ' Access machine code data file 

420 FOR X = 0! TO 127! 

430   INPUT #1,J ' Install machine code 

440   POKE X,J 

450 NEXT 

460 CLOSE #1 

461 ' 

500 ' *** Set all program variables *** 
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501 ' 

510 ADDRESS% = 768 ' PC21 base address 

520 CONTROL = 96 ' Normal state of PC21 Control Byte 

530 CRASH = 4 ' Mask for Control Bit 2 (BMA time-out) 

540 FAULT = 32 ' Mask for C.B. 5 (restart BMA) 

550 PC21WRITE = 0! ' Address of PC21WRITE subroutine 

560 PC21READ = 49! ' Address of PC21READ subroutine 

561 ' 

570 ADC#= 9 ' ADC module in CAMAC slot #9 

580 DAC# = 12 ' DAC module in CAMAC slot #12 

581 ' ch#0,l,2: +/- 5V 

582 ' 3: + 10V (scan mass spec) 

590 TIM# = 10 ' TIMER/SCALER module in CAMAC slot #10 

600 DELAY* = 0.025 ' Delaytime for DAC respnse in sec. 

601 ' 

610 DATDIR$ = "C:\MASSDAT\"    ' Directory for data files 

615 ' 

620 UMassFac = 0.0333 ' Conversion factor mass —> DAC voltage 

630 NADC = 2 '# of measurements done by ADC 

631 ' 

700 ' *** PC21 RESET *** 

701 ' 

710 OUT ADDRESS%+1, (CONTROL OR CRASH) ' Control Bit 2 high 

720 OUT ADDRESS%+1, (CONTROL AND NOT CRASH) ' Control Bit 2 low 

730 FOR Y=l TO 500: NEXT ' Wait for BMA 

740 OUT ADDRESS%+1, (CONTROL AND NOT FAULT) ' Control Bit 5 low 

750 OUT ADDRESS%+1, ( CONTROL OR FAULT) ' Control Bit 5 high 

751 ' 

800 ' *** Load CAMAC drivers and initialize crate *** 

801 ' 

810 BLOAD "C:\BASICDIR\NEW\CAMIO",128        ' Load drivers into data segment 

820 CAMO=&H80:CAMI=&H86:CAML=&H8C:CAMCL=&H92 ' Driver entry point addresses 

830 CAMO24=&HB0:CAMI24=&HB6:CRATE=&HAA       ' Driver entry point addresses 

840 CC%=1: CALL CRATE(CC%) ' Activate controller in Jl slot 

850 OUT &H240,0 ' Clear high write-only data register 

860 I%=64: CALL CAMCL(I%) ' Reset crate 

870 I%=1: CALL CAMCL(I%) ' Initialize crate 

871 ' 

1000 ' *** Initialization *** 

1001' 

1010 N%=DAC#:F%=16:A%=3:D%=-32767: GOSUB 3410 ' Mass spec set to 0 amu 
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1011' 

1100 ' *** Define data file name *** 

1101' 

1020 PRINT"" 

1030 BEEP: PRINT "Data file name:";: INPUT FILNAMS 

1040 ON ERROR GOTO 1120 

1050 OPEN DATDIR$+FILNAM$ FOR INPUT AS #1 ' Test to see if file already exists. 

1051' File exists. Ask user what to do!! 

1060 BEEP: BEEP 

1070 PRINT "File exists! Continue [y/n]: ? " 

1080 V$=INKEY$: IF V$="" THEN GOTO 1080 

1090 IF V$="Y" OR V$="y" THEN GOTO 1130    ' Overwrite existing file. 

1100 IF V$="N" OR V$="n" THEN GOTO 1030   ' Get a new name for file. 

1110 GOTO 1080 

1120 RESUME 1130 ' File nonexistent. Proceed. 

1130 ON ERROR GOTO 0 

1140 CLOSE #1 ' Close temporary input file. 

1150 OPEN DATDIR$+FILNAM$ FOR OUTPUT AS #1 ' Open output file. 

1151' 

1200 ' *** Enter parameter for measurement *** 

1201 ' 

1210 BEEP: PRINT"": PRINT "Low Mass:";: INPUT LowMass 

1220 PRINT "High Mass:";: INPUT HighMass 

1230 DifMass=HighMass-LowMass 

1240 PRINT "# of Intervals:";: INPUT IntNum 

1250 DelMass=DifMass/(1.0*IntNum) 

1260 PRINT "# of Scans per Mass:";: INPUT NumScan 

1270 PRINT "Comment:";: INPUT HDR$ 

1271' 

1300 ' *** Print file header *** 

1301' 

1310 PRINT #1, "Data stored by MasSpecl.O on ";DATE$;" at ";TIME$ 

1320 PRINT«, HDR$ 

1330 PRINT #1," I Mass Signal I" 

1335 PRINT #l,NumInt 

1331' 

1400 ' *** Initialize plotting/DAC *** 

1401' 

1410 CLS: SCREEN 2: DRAW "BM0,0 R=XPix;D=YPix;L=XPix;U=YPix;" 

1420 LOCATE 20,1: PRINT LowMass: LOCATE 21,1: PRINT HighMass 

1430 LOCATE 2,50: PRINT FILNAM$ 
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1435 XFac=XPix/(1.0*DifMass) ' XFac for x-axis 

1440 X0%=0.0 

1445' 

1550 ' *** Data collection loop *** 

1551' 

1570 FOR Nlnt=0 TO IntNum ' Start scans 

1571' 

1580  Mass = LowMass + NInt*DelMass 

1590  URamp = Mass * UMassFac: GOSUB 3540   ' GoSub SetDAC 

1610   TAverage=0.0 

1611' 

1620  FOR NScan=l TO NumScan ' ADC loop 

1621' 

1630    GOSUB 4110: Sig= ADC * GoSub ADCloop: get Signal from ADC 

1640    TAverage = TAverage + Sig 

1650    Signal = TAverage/(1.0*NumScan) 

1660    YVal(NInt) = Signal 

1661' 

1670   NEXTNScan 'FORNScan... 

1671' 

1680 '*** PRINT #1, USING "##.###"; Mass; Signal 

1681' 

1690 NEXT NInt 'FORNInt... 

1691' 

1695 FOR ii=0 TO IntNum: PRINT #1, USING "##.###"; Mass; Signal: NEXT ii 

1696 ' 

1700 ' *** Plotting data »** 

1701' 

1705 X0%=0.0 

1706' 

1710 FOR ii=l TO IntNum 

1711' 

1720   DRAW "BM=X0%;,=Y0%;" 

1730  YP%=YPix-(YVal(ii)-YNeg)*YFac»YScale: XP%=ii»DelMass*XFac 

1740  IF YVal(ii)>YPos THEN YP%=0 

1750   IF YVal(ii)<YNeg THEN YP%=YPix 

1760  Y0%=YP% 

1770   DRAW "M=X0%;,=Y0%;": DRAW "M=X0%;,=YP%;": DRAW "M=XP%;,=YP%;": X0%=XP% 

1771' 

1780 NEXT ii 

1781' 



181 
1790 LOCATE 22,1: PRINT" 

1800 PRINT "Rescale Plot:";: INPUT YScale 

1810 IF YScale > 1.0 THEN GOTO 1705 

1820 LOCATE 23,1: BEEP: BEEP: PRINT ">»(EXIT MasSpecl.O with 'E')" 

1830 A$=INKEY$: IF (A$="E") OR (A$="e") THEN CLS ELSE 1830 

1831' 

1900 CLOSE ' Close OutputFile 

1901' 

1910 END 

1911" 

1912' 

3000 ' *** SUBROUTINES ARE LOCATED HERE !!! *** 

3001' 

3010 ' *** PC21 WRITE *** 

3011' 

3020 BFLAG%=0 

3030 IF INSTR(COMMAND$,"Wl") OR INSTR(COMMAND$,"wl") THEN BFLAG%=1 

3040 IF INSTR(COMMAND$,"PB") OR INSTR(COMMAND$,"pb") THEN BFLAG%=1 

3050 IF INSTR(COMMAND$,"XlB") OR INSTR(COMMAND$,"xlb") THEN BFLAG%=1 

3060 COMMANDS = COMMANDS + CHR$(13)     ' Add carriage return to command 

3070 CALL PC21WRITE(COMMAND$, ADDRESS%) ' Execute machine language write 

3080 RETURN 

3081' 

3100 ' *** PC21 READ *** 

3101 ' 

3110 ANSWER$=" "+ Reserve string space for response 

3120 CALL PC21READ( ANSWERS, ADDRESS%, BFLAG%) ' Execute read 

3130 IF BFLAG%=0 THEN RETURN 

3140 NUM#=0: FOR X=l TO 4 

3150DIGIT%=ASC(MID$(ANSWER$,X,1)) 

3160 NUM#=NUM#+DIGIT%*256A(4-X): NEXT 

3170 ANSWER$=STR$(NUM#) 

3180 RETURN ' BFLAG% identifies binary report commands 

3181' 

3400 ' *** Main WRITE/READ Subroutines to CAMAC *** 

3401' 

3410 CALL CAMO(N%,F%,A%,D%,Q%,X%) 

3420 RETURN 

3421' 

3430 CALL CAMI24(N%,F%,A%,D24%(1),Q%,X%) 

3450 RETURN 
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3451' 

3460 CALL CAM(N%,F%,A%,D%,Q%/X%) 

3470 RETURN 

3471' 

3530 ' *** Set DAC *** 

3531' 

3540 URamp#=INT(URamp*32767/5)-32767 

3545 N%=DAC#:F%=16:A%=3:D%=URamp#: GOSUB 3410 

3550 RETURN 

3551" 

4100'   ****** Get ADC data 

4101' 

4110 FOR 1=1 TO NADC: N%=ADC#:F%=2:A%=0: GOSUB 3460: NEXT I 'GoSub CAMO 

4120 ADC=D%: ADC=-l*ADC*10/4096 

4130 RETURN 
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PASCAL Programs 
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IO CHECK.PAS 

file      : IO_CHECK.PAS 

function  : Check routines for I/O operations 

author    : W.Maring 

changes   : 12.02.93 

14.05.93 (for GRAFICS mode) 

UNITICLCheck; 

j$IFDEF CPU87} 

($N+} 

{$ELSE} 

($N-( 

{$ENDIF1 

INTERFACE 

USES 

Crt, 

Dos, 

Graph; 

TYPE 

($IFDEF CPU87) 

Real = Single; 

($ENDIF1 

TStrl = String[l]; 

TStr2 = String[2]; 

TStr4 = String[4]; 

TStr40       = String[40]; 

TStr80 = String[80]; 

CONST 

Esc = Char(27); 

PROCEDURE GetDateTime(VAR DatTimStr: TStr40); 

PROCEDURE PrintFileHeader(VAR FileFil: Text; FileName: TStr40); 
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PROCEDURE PClearMenuXY(MenuX,MenuY,Color,BkColor: Integer; MenuStr: TStr80); 

PROCEDURE PMenuXY(MenuX/MenuY,Color,BkColor: Integer; MenuStr: TStr80); 

PROCEDURE InpChar(VAR InputString: TStr80); 

PROCEDURE PInpChar(MenuX,MenuY,Color,BkColor: Integer; VAR MenuStr: TStr80; 

VAR InputString: TStr80); 

PROCEDURE InputFile(FilePrompt: TStr40; VAR FileFil: Text; FilePath: TStr40; 

VAR FileName: TStr40); 

PROCEDURE PInputFile(FilePrompt: TStr80; VAR FileFil: Text; FilePath: TStr40; 

VAR FileName: TStr40; MenuX,MenuY,Color,BkColor: Integer; 

VAR MenuStr: TStr80); 

PROCEDURE OutputFile(FilePrompt: TStr40; VAR FileFil: Text; FilePath: TStr40; 

VAR FileName: TStr40); 

PROCEDURE POutputFile(FilePrompt: TStr80; VAR FileFil: Text; FilePath: TStr40; 

VAR FileName: TStr40; MenuX,MenuY,Color,BkColor: Integer; 

VAR MenuStr: TStr80); 

PROCEDURE ReadReal(InpString: TStr40; DoLimit,UpLimit: Real; 

VAR Reallnp: Real); 

PROCEDURE PReadReal(InpString: TStr80; DoLimit,UpLimit: Real; 

VAR Reallnp: Real; MenuX,MenuY,Color,BkColor: Integer; 

VAR MenuStr: TStr80); 

PROCEDURE ReadInt(InpString: TStr40; DoLimit,UpLimit: Integer; 

VAR Intlnp: Integer); 

PROCEDURE PReadInt(InpString: TStr80; DoLimit/UpLimit: Real; 

VAR Intlnp: Integer; MenuX,MenuY,Color,BkColor: Integer; 

VAR MenuStr: TStr80); 

PROCEDURE ReadStr(InpString: TStr40; VAR Strlnp: TStr80); 

PROCEDURE PReadStr(InpString: TStr80; DoLimit,UpLimit: Real; 

VAR Strlnp: TStr80; MenuX,MenuY,Color,BkColor: Integer; 

VAR MenuStr: TStr80); 

PROCEDURE ReadChar(InpString: TStr40; VAR Charlnp: TStrl); 

PROCEDURE PReadChar(InpString: TStr80; DoLimit,UpLimit: Real; 

VAR Charlnp: TStrl; MenuX,MenuY,Color,BkColor: Integer; 

VAR MenuStr: TStr80); 

IMPLEMENTATION 

PROCEDURE GetDateTime:   String containing date/time 
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PROCEDURE GetDateTime(VAR DatTimStr: TStr40); 

VAR 

YearStr : TStr4; 

MonthStr, 

DayStr, 

HourStr, 

MinStr, 

SecStr : TStr2; 

ActYear, 

ActMonth, 

ActDay, 

ActDayOfWeek, 

ActHour, 

ActMin, 

ActSec, 

ActSeclOO        : Word; 

BEGIN 

GetDate(ActYear,ActMonth,ActDay,ActDayOfWeek); 

GetTime(ActHour,ActMin,ActSec,ActSeclOO); 

Str(ActYear:4,YearStr); 

Str(ActMonth:2,MonthStr); 

Str(ActDay:2,DayStr); 

Str(ActHour:2,HourStr); 

Str(ActMin:2,MinStr); 

Str(ActSec:2,SecStr); 

DatTimStr:=MonthStr+7'+DayStr+7'+YearStr 

+' '+HourStr+':'+MinStr+,:'+SecStr; 

END; 

I- 
PROCEDURE PrintFileHeader:   prints file header 

 , 

PROCEDURE PrintFileHeader(VAR FileFil: Text; FileName: TStr40); 

VAR 

ActYear, 

ActMonth, 

ActDay, 

ActDayOfWeek, 
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ActHour, 

ActMin, 

ActSec, 

ActSeclOO : Word; 

BEGIN 

GetDate(ActYear,ActMonthActDay,ActDayOfWeek); 

GetTime(ActHour,ActMin,ActSec,ActSeclOO); 

Writeln(FileFil,FileName/   ^ActMontfrV/VActDay^/AActYear 

,'   ',ActHour:l/:',ActMin:l/:',ActSec:l); 

END; 

PROCEDURE PClearMenuXY:   clears the MenuStr on the screen 

(needs to be in GRAFICS mode !!!) 

PROCEDURE PClearMenuXY(MenuX,MenuY,Color,BkColor: Integer; MenuStr: TStr80); 

BEGIN 

SetColor(BkColor); 

OutTextXY(MenuX,MenuY,MenuStr); 

SetColor(Color); 

END; 

(- 
PROCEDURE PMenuStr:   plots the MenuStr on the screen 

(needs to be in GRAFICS mode !!!) 

 } 

PROCEDURE PMenuXY(MenuX,MenuY,Color,BkColor: Integer; MenuStr: TStr80); 

BEGIN 

OutTextXY(MenuX/MenuY,MenuStr); 

END; 

PROCEDURE InpChar: uses ReadKey command to read string var 

PROCEDURE InpChar(VAR InputString: TStr80); 

VAR 

InpChar   : Char; 

InpStr    : String; 

XCPos, 
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XCPosSav, 

YCPos, 

YCPosSav   : Integer; 

InpOkay    : Boolean; 

BEGIN 

InpStr:= "; 

XCPos:= WhereX; 

XCPosSav:= XCPos; 

YCPos:= WhereY; 

YCPosSav:= YCPos; 

InpOkay:= False; 

REPEAT 

InpChar:= ReadKey; 

IF InpChar=Char(27) THEN 

BEGIN 

InputString:= Char(27); 

Exit; 

END 

ELSE 

BEGIN 

IF InpChar=Char(8) THEN 

BEGIN 

IF XCPos>=XCPosSav+l THEN    . 

BEGIN 

GotoXY(XCPos-l,YCPosSav); 

WriteC '); 

GotoXY(XCPos-l,YCPosSav); 

XCPos:= XCPos-1; 

InpStr:=Copy(InpStr,l,XCPos-XCPosSav); 

END; 

END 

ELSE 

BEGIN 

Write(InpChar); 

XCPos:= XCPos+1; 

IF NOT (InpChar=Char(13)) THEN InpStr:= InpStr+InpChar; 

InpOkay:= True; 

END; 

END; 

UNTIL InpChar=Char(13); 

Writeln; 
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IF InpOkay THEN 

BEGIN 

InputString:= InpStr; 

END 

ELSE 

BEGIN 

GotoXY(l,YCPosSav); 

ClrEOL; 

END; 

END; 

j  

PROCEDURE PInpChar: uses ReadKey command to read string var 

(needs to be in GRAFICS mode !!!) 

 } 

PROCEDURE PInpChar(MenuX,MenuY,Color,BkColor: Integer; VAR MenuStr: TSrr80; 

VAR InputString: TStr80); 

VAR 

StrLength:   Integer; 

Ch      :   Char; 

InputStr:   String; 

BEGIN 

InputStr:= "; 

StrLength:= 0; 

REPEAT 

Ch:= ReadKey; 

IF Ch=Char(27) THEN 

BEGIN 

InputString:= Char(27); 

Exit; 

END 

ELSE 

BEGIN 

IF (Ch=Chr(8)) AND (StrLength<Length(InputStr)+l) 

AND (StrLength>0) THEN 

BEGIN 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

StrLength:= StrLength-1; 

InputStr:=Copy(InputStr,l,(Length(InputStr)-l)); 

MenuStr:= Copy(MenuStr,l,(Length(MenuStr)-l)); 
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END; 

IF NOT (Ch=Chr(13)) AND (Ch IN ['!'..'-']) THEN 

BEGIN 

StrLength:= StrLength+1; 

InputStr:= InputStr+Ch; 

MenuStr:= MenuStr+Ch; 

END; 

END; 

InputString:= InputStr; 

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

UNTIL Ch IN [Chr(13)]; 

END; 

PROCEDURE InputFile: checks that input file exists and opens input file 

FileName=Char(27) if ESC 

=NonEx if not existent 

 , 

PROCEDURE InputFile(FilePrompt: TStr40; VAR FileFil: Text; FilePath: TStr40; 

VAR FileName: TStr40); 

VAR 

Ch        : Char; 

IOokay    : Boolean; 

BEGIN 

IOokay:=False; 

REPEAT 

Write(FilePrompt); 

InpChar(FileName); 

IF FileName=Char(27) THEN Exit; 

IF FilePath='LocalDir' THEN 

BEGIN 

Assign(FileFiLFileName); 

END 

ELSE 

BEGIN 

Assign(FileFil,FilePath+FileName); 

END; 

($M 

Reset(FileFil); 

Close(FileFil); 

($1+1 
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IF IOResultoO THEN 

BEGIN 

FileName:= 'NonEx'; 

WritelnC*** file not found!! ***'); 

IOokay:=FaIse; 

END 

ELSE 

BEGIN 

Reset(FileFil); 

IOokay:=True; 

END; 

UNTIL IOokay; 

END; 

PROCEDURE PInputFile: checks that input file exists and opens input file 

(needs to be in GRAFICS mode !!!) 

FileName=Char(27) if ESC 

=NonEx if not existent 

 } 

PROCEDURE PInputFile(FilePrompt: TStr80; VAR FileFil: Text; FilePath: TStr40; 

VAR FileName: TStr40; MenuX,MenuY,Color,BkColor: Integer; 

VAR MenuStr: TStr80); 

VAR 

Ch        : Char; 

IOokay    : Boolean; 

BEGIN 

IOokay:=False; 

REPEAT 

MenuStr:= FilePrompt; 

PMenuXY(MenuX>lenuY,Color,BkColor,MenuStr); 

PInpChar(MenuX,MenuY,Cok>r,BkColor,MenuStr,FileName); 

IF FileName=Char(27) THEN 

BEGIN 

Exit; 

END; 

IF FilePath=,LocalDir' THEN 

BEGIN 

Assign(FileFil,FileName); 

END 

ELSE 
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BEGIN 

Assign (FileFil,FilePath+FileName); 

END; 

($I-( 

Reset(FileFil); 

Close(FileFil); 

($1+) 

IF IOResultoO THEN 

BEGIN 

FileName:= 'NonEx'; 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

MenuStr:= '*** file NOT found !! ***'; 

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

Delay(500); 

IOokay:=False; 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

END 

ELSE 

BEGIN 

Reset(FileFil); 

IOokay:=True; 

END; 

UNTIL IOokay; 

END; 

{  

PROCEDURE OutputFile: checks that out putfile doesnot already exist and 

opens output file 

FileName=Char(27) if ESC 

=AlreadyEx if already existent 

 1 

PROCEDURE OutputFile(FilePrompt: TStr40; VAR FileFil: Text; FilePath: TStr40; 

VAR FileName: TStr40); 

VAR 

Ch        : Char; 

IOokay    : Boolean; 

BEGIN 

IOokay:=False; 

REPEAT 

Write(FilePrompt); 

InpChar(FileName); 
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IF FileName=Char(27) THEN Exit; 

IF FileParh='LocalDir' THEN 

BEGIN 

Assign(FileFil,FileName); 

END 

ELSE 

BEGIN 

Assign(FileFil,FilePath+FileName); 

END; 

{SI-} 

Reset(FileFil); 

Close(FileFil); 

($1+1 

IF IOResult=0 THEN 

BEGIN 

FileName:= 'AlreadyEx'; 

WritelnO*** file already exists!! ***'); 

Write('new file name ? (Y/N):'); 

REPEAT 

Ch:= ReadKey; 

UNTIL Ch IN ['n'/N'/y'/Y']; 

Writeln(Ch); 

IF (Ch='N) OR (Ch='n') THEN 

BEGIN 

($1-1 

Rewrite(FileFil); 

($1+) 

IF IOResultoO THEN 

BEGIN 

WritelnC*** write ERROR!! ***'); 

IOokay:=False; 

END 

ELSE 

BEGIN 

IOokay:=True; 

END; 

END 

ELSE 

IOokay:=False; 

END 

ELSE 
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BEGIN 

($1-1 

Rewrite(FileFil); 

($1+) 

IF IOResultoO THEN 

BEGIN 

WritelnC*** write ERROR!! ***'); 

IOokay:=False; 

END 

ELSE 

BEGIN 

IOokay:=True; 

END; 

END; 

UNTIL IOokay; 

END; 

PROCEDURE POutputFile: checks that out putfile doesnot already exist and 

opens output file 

(needs to be in GRAFICS mode !!!) 

FileName=Char(27) if ESC 

=AlreadyEx if already existent 

 ) 

PROCEDURE POutputFile(FilePrompt: TStr80; VAR FileFil: Text; FilePath: TStr40; 

VAR FileName: TStr40; MenuX,MenuY,Color,BkColor: Integer; 

VARMenuStr:TStr80); 

VAR 

Ch        : Char; 

IOokay    : Boolean; 

BEGIN 

IOokay:=False; 

REPEAT 

MenuStr:= FilePrompt; 

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

PInpChar(MenuX/MenuY,Color,BkColor/MenuStr,FileName); 

IF FileName=Char(27) TFIEN 

BEGIN 

Exit; 

END; 

IF FilePath='LocalDir' THEN 
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BEGIN 

Assign(FileFil,FileName); 

END 

ELSE 

BEGIN 

Assign(FileFil/FiIePath+FileName); 

END; 

f$I-l 

Reset(FileFil); 

CIose(FileFil); 

($1+1 

IF IOResult=0 THEN 

BEGIN 

FileName:= 'AlreadyEx'; 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

MenuStr:= '*** file already EXISTS !! ***'; 

PMenuXYCMenuX^enuY^olo^BkColo^MenuStr); 

Delay(500); 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

MenuStr:= 'new file name ? (Y/N):'; 

PMenuXY(MenuX>lenuY,Color,BkColor,MenuStr); 

REPEAT 

Ch.= ReadKey; 

UNTIL Ch IN ['n'/N'/y'/Y']; 

MenuStr:= MenuStr+Ch; 

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

IF (Ch='N') OR (Ch='n') THEN 

BEGIN 

($1-1 

Rewrite(FileFil); 

($1+) 

IF IOResultoO THEN 

BEGIN 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

MenuStr:= '*** write ERROR !! ***'; 

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

Delay(500); 

IOokay:=False; 

PClearMenuXYCMenuX^enuY^olo^BkColo^MenuStr); 

END 
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ELSE 

BEGIN 

IOokay:=True; 

END; 

END 

ELSE 

IOokay:=False; 

END 

ELSE 

BEGIN 

($1-1 

Rewrite(FileFil); 

{$1+1 

IF IOResultoO THEN 

BEGIN 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

. MenuStr:= '*** write ERROR !! ***'; 

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

Delay(500); 

IOokay:=False; 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

END 

ELSE 

BEGIN 

IOokay:=True; 

END; 

END; 

UNTIL IOokay; 

END; 

PROCEDURE ReadReal:   checks that input is REAL and is in input interval 

PROCEDURE ReadReal(InpString: TStr40; DoLimit,UpLimit: Real; VAR ReaEnp: Real); 

VAR 

IOokay    : Boolean; 

RealStr   : TStr40; 

Code      : Integer; 

BEGIN 

IOokay:=False; 
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REPEAT 

Write(InpString); 

($1-1 

{    Readln(Reallnp);) 

InpChar(RealStr); 

(    IF RealStr=Esc THEN Exit;) 

Val(RealStr,RealInp,Code); 

IF CodeoO THEN 

BEGIN 

Writeln('*** input ERROR !! ***'); 

END 

ELSE 

BEGIN 

IF (Reallnp < DoLimit) OR (Reallnp > UpLimit) THEN 

BEGIN 

IOokay:=False; 

WritelnC*** out of Range !! ***'); 

END 

ELSE 

IOokay:=True; 

END; 

($1+) 

UNTIL IOokay; 

END; 

PROCEDURE PReadReal:   checks that input is REAL and is in input interval 

(needs to be in GRAFICS mode!) 

PROCEDURE PReadReaI(InpString: TStr80; DoLimit,UpLimit: Real; 

VAR Reallnp: Real; MenuX,MenuY,Color,BkColor: Integer; 

VARMenuStr:TStr80); 

VAR 

IOokay    : Boolean; 

RealStr   : TStr40; 

Code      : Integer; 

BEGIN 

IOokay:=False; 

REPEAT 

MenuStr:= InpString; 

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 



198 
PInpChar(MenuX,MenuY,Color,BkColor,MenuStr,RealStr); 

($1-1 

Val(RealStr,RealInp,Code); 

IF CodeoO THEN 

BEGIN 

PClearMenuXY(MenuX/MenuY,Color,BkColor,MenuStr); 

MenuStr:= '*** input ERROR !! ***'; 

PMenuXY(MenuX,MenuY/Color,BkColor,MenuStr); 

Delay(500); 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

END 

ELSE 

BEGIN 

IF (Reallnp < DoLimit) OR (Reallnp > UpLimit) THEN 

BEGIN 

IOokay:=False; 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

MenuStr:= '*** out of RANGE !! ***'; 

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

Delay(500); 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

END 

ELSE 

IOokay:=True; 

END; 

($1+1 

UNTIL IOokay; 

END; 

PROCEDURE Readlnt:   checks that input is INTEGER and is in input interval 

PROCEDURE ReadInt(InpString: TStr40; DoLimit,UpLimit: Integer; 

VAR Intlnp: Integer); 

VAR 

IOokay    : Boolean; 

IntStr    : TStr40; 

Code      : Integer; 

BEGIN 

IOokay:=False; 
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REPEAT 

Write(InpString); 

{$1-1 

InpChar(IntStr); 

Val(IntStr,IntInp,Code); 

IF CodeoO THEN 

BEGIN 

Writeln('*** input ERROR!! ***'); 

END 

ELSE 

BEGIN 

IF (Intlnp < DoLimit) OR (Intlnp > UpLimit) THEN 

BEGIN 

IOokay:=False; 

WritelnC*** out of Range !! ***'); 

END 

ELSE 

IOokay: =True; 

END; 

($1+} 

UNTIL IOokay; 

END; 

PROCEDURE PReadlnt:   checks that input is INTEGER and is in input interval 

(needs to be in GRAFICS mode!) 

 } 

PROCEDURE PReadInt(InpString: TStr80; DoLimitUpLimit: Real; 

VAR Intlnp: Integer; MenuX,MenuY,Color,BkColor: Integer; 

VAR MenuStr: TStr80); 

VAR 

IOokay    : Boolean; 

IntStr    : TStr40; 

Code      : Integer; 

BEGIN 

IOokay:=False; 

REPEAT 

MenuStr: = InpString; 

PMenuXY(MenuX/MenuY/Color,BkColor,MenuStr); 

PInpChar(MenuX,MenuY,CoIor,BkColor,MenuStr,IntStr); 

($M 
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Val(IntStr,IntInp,Code); 

IF CodeoO THEN 

BEGIN 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

MenuStr:='*** input ERROR !!***'; 

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

Delay(500); 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

END 

ELSE 

BEGIN 

IF (Intlnp < DoLimit) OR (Intlnp > UpLimit) THEN 

BEGIN 

IOokay:=False; 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

MenuStr:= '*** out of RANGE !! ***'; 

PMenuXY(MenuX,MenuY,Color/BkColor/MenuStr); 

Delay(500); 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

END 

ELSE 

IOokay:=True; 

END; 

($1+) 

UNTIL IOokay; 

END; 

PROCEDURE ReadStr:    reads a STRING 

PROCEDURE ReadStr(InpString: TStr40; VAR Strlnp: TStr80); 

VAR 

IOokay    : Boolean; 

BEGIN 

IOokay:=False; 

REPEAT 

Write(InpString); 

($1-1 

InpChar(Strlnp); 

(   Readln(Strlnp); ( 
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IF IOResultoO THEN 

BEGIN 

WritelnC*** input ERROR!! ***'); 

END 

ELSE 

BEGIN 

IOokay:=True; 

END; 

($1+1 

UNTIL IOokay; 

END; 

I- 
PROCEDURE PReadStr:   reads a STRING 

(needs to be in GRAFICS mode!) 

 1 
PROCEDURE PReadStr(InpString: TStr80; DoLimit,UpLimit: Real; 

VAR Strlnp: TStr80; MenuX,MenuY,Color,BkColor: Integer; 

VARMenuStr:TStr80); 

VAR 

IOokay    : Boolean; 

BEGIN 

IOokay:=False; 

REPEAT 

MenuStr:= InpString; 

PMenuXY(MenuX,MenuY,Color/BkColor,MenuStr); 

PInpChar(MenuX,MenuY,Color,BkColor,MenuStr,StrInp); 

($1-1 

IF IOResultoO THEN 

BEGIN 

PClearMenuXY(MenuX/MenuY,Color,BkColor/MenuStr); 

MenuStr:= '*** input ERROR!! ***'; 

PMemiXY(MenuX,MenuY,Color,BkColor,MenuStr); 

Delay(500); 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

END 

ELSE 

BEGIN 

IOokay:=True; 

END; 

($1+) 
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UNTIL IOokay; 

END; 

PROCEDURE ReadChar:   reads a CHARACTER 

PROCEDURE ReadChar(InpString: TStr40; VAR Charlnp: TStrl); 

VAR 

IOokay    : Boolean; 

BEGIN 

IOokay:=False; 

REPEAT 

Write(InpString); 

($1-1 

InpChar(Charlnp); 

(    Readln(Charlnp);) 

IF IOResultoO THEN 

BEGIN 

WritelnC*** input ERROR!! ***'); 

END 

ELSE 

BEGIN 

IOokay:=True; 

END; 

($1+) 

UNTIL IOokay; 

END; 

PROCEDURE PReadChar:   reads a CHARACTER 

(needs to be in GRAFICS mode!) 

 } 

PROCEDURE PReadChar(InpString: TStr80; DoLimit,UpLimit: Real; 

VAR Charlnp: TStrl; MenuX,MenuY,Color,BkColor: Integer; 

VARMenuStr:TStr80); 

VAR 

IOokay    : Boolean; 

BEGIN 

IOokay:=False; 

REPEAT 
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MenuStr:= InpString; 

PMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

PlnpCharCMenuX^enuY^olo^BkColo^MenuSt^Charlnp); 

($1-1 

IF IOResultoO THEN 

BEGIN 

PClearMenuXY(MenuX,MenuY,Color,BkColor,MenuStr); 

MenuStr:= "** input ERROR!! ***'; 

PMenuXY(MenuX,MenuY,Color/BkColor,MenuStr); 

Delay(500); 

PClearMenuXY(MenuX,MenuY/Color,BkColor,MenuStr); 

END 

ELSE 

BEGIN 

IOokay:=True; 

END; 

|$I+| 

UNTIL IOokay; 

END; 

END. (IMPLEMENTATION of IO.Check ) 
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P_ANDATA.PAS 

file      : P_ANDATA.PAS 

function   : data 

author    : W.Maring 

changes    : 05-07-93 

($1 P_ComOpt) 

UNITP_AnData; 

{$IFDEF CPU871 

($N+) 

f$ELSE| 

f$N-) 

($ENDIF( 

INTERFACE 

|$IFDEF AngSpec} 

TYPE 

j$IFDEF CPU87| 

Real = Single; 

($ENDIF) 

TArray = Array [0..2000] of Real; 

TMessRec = RECORD 

AngStart, 

AngEnd, 

DifAng, 

DelAng, 

Mass, 

URamp, 

SigAverage, 

Signal, 

DarkCnt, 

LaserFreq, 

IntegTime, 

Difx, 

YScale, 
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XValMax, , 

YValMax     : Real; 

XVal, 

YVal, 

ActPlotData : TArray; 

IntSpec, 

IntNum, 

IntRange, 

NumScan, 

NInt, 

NScan       : Integer; 

NormScale, 

NewFile, 

EnExit, 

PltHP       : Boolean; 

Comment     : String[80]; 

PltDirec, 

FileDirec, 

ExeDirec, 

PltFileName, 

FileName     : String[60]; 

PltFil, 

DatFil      : Text; 

END; 

{$ENDIF( 

IMPLEMENTATION 

END/ 
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P CAM2.PAS 

file      : P_CAM2.PAS 

function   : programming CAMAC functions 

author    : B.Ungerer, MPI Stroemungsforschung, Goettingen, FRG 

files     : MES40BJ.OBJ 

changes    : 04.08.88//09.02.93//18.02.93 

) 

UNITP_Cam2; 

($IFDEF CPU87) 

($N+) 

(SELSE1 

i$N-} 

($ENDIF) 

INTERFACE 

USES 

crt, 

dos, 

printer; 

TYPE 

($IFDEF CPU87) 

Real = Single; 

($ENDIF} 

($L Mes40bj ) ( orig.:Cam6001 Asm, without "Real_cvt"} 

PROCEDURE Init_Crate; 

FUNCTION TimeConv(timeval:Real): Integer; 

PROCEDURE Clear_TimSca(subadress,d:Integer); 

PROCEDURE Clear_LAM(subadress,d:Integer); 

PROCEDURE Write_TimSca(subadress,d:Integer); 

PROCEDURE Read_Scaler(subadress:Integer; VAR signaHnteger); 

PROCEDURE WaitScaler; 

PROCEDURE Init_TimSca; 

PROCEDURE ResetJTimSca; 
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PROCEDURE Start_TimSca(time:Real); 

PROCEDURE Set_DACl(subadress:Integer; volt:Real); 

PROCEDURE Set_DAC2(subadress:Integer; volt:Real); 

PROCEDURE Get_ADCl(subadress:Integer; VAR signahReal); 

PROCEDURE Get_ADC2(subadress:Integer; VAR signal:Real); 

CONST 

NO    : Integer = 0, 

Nl   : Integer = 1 

N2    : Integer = 2, 

N3    : Integer = 3, 

N9    : Integer = 9, 

N10   : Integer = 10, 

N16   : Integer = 16, 

N17   : Integer = 17; 

N23   : Integer = 23, 

N25   : Integer = 25, 

N26   : Integer = 26, 

N27   : Integer = 27, 

N64   : Integer = 64; 

modul addresses: 

timsca : Integer = 10;    (timer/sealer) 

dac    : Integer = 12;    (12bit DAC( 

adc    : Integer = 9;    (12bit ADC| 

(- 
sub addresses: 

dac_c3 : Integer = 3; 

adc_cl : Integer = 0; 

adc_c2 : Integer = 1; 

tim_cl : Integer = 0; 

tim_c2 : Integer = 1; 

sca_cl :Integer = 1; 

sca_c2 : Integer = 3; 

(DAC:Ch#3} 

(ADC:Ch#l) 

(ADC: Ch #2} 

(Timer: Ch #1} 

(Timer: Ch #2} 

(Sealer: Ch#l) 

(Sealer: Ch #2) 
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d : integer = 0; 

q : integer = 0; 

x : integer = 0; 

Id :LongInt = 0; 

data to calculate time value for timer/sealer modul 

 ) 

OvfTab : Array [1..32] of Integer = (4,9,8,9,7,9,8,9,6,9,8,9,7,9,8,9,5, 

9,8,9,7,9,8,9,6,9,8,9,7,9,8,9); 

MulTab : Array [1..32] of Integer = (0,16,8,17,4,18,9,19,2,20,10,21,5, 

22,11,23,1,24,12,25,6,26,13,27,3, 

28,14,29,7,30,15,31); 

Countlnit: Longlnt = $00FFFFFF; 

NADC = 3; 

IMPLEMENTATION 

{ Beginn DSP-Software) 

( 

Declarations of CAMAC I/O routines for inclusion in 

a PASCAL program. 

PROCEDURE Crate_Set (VAR Crate: INTEGER); EXTERNAL; 

PROCEDURE Camo (VAR N,F,A,Data : INTEGER; 

VAR Q,X : INTEGER); EXTERNAL; 

PROCEDURE Cami (VAR N,F,A: INTEGER; 

VAR Data,Q,X : INTEGER); EXTERNAL; 

PROCEDURE Cami24 (VAR N,F,A : INTEGER; 

VAR Data : Longlnt; 

VAR Q,X : INTEGER); EXTERNAL; 

PROCEDURE Camo24 (VAR N,F,A: INTEGER; 

VAR Data : Longlnt; 

VAR Q,X: INTEGER); 

Caml (VAR Encoded_Lam : INTEGER); 

Camel (VAR Control_word : INTEGER); 

PROCEDURE < 

PROCEDURE( 

PROCEDURE DMAset (VAR Crate,Nbytes,Qmode,Count: INTEGER);   EXTERNAL; 

EXTERNAL; 

EXTERNAL; 

EXTERNAL; 
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PROCEDURE DMAI (VAR N,F,A : INTEGER; 

Data : Longint; 

VAR Error : INTEGER); EXTERNAL; 

PROCEDURE DMAO (VAR N,F,A : INTEGER; 

Data : Longint; 

VAR Error : INTEGER); EXTERNAL; 

PROCEDURE CamCyc (VAR ncycles : INTEGER); EXTERNAL; 

PROCEDURE Crate; EXTERNAL; 

(************* Ende DSP - Software ***********************************} 

PROCEDURE Init_Crate 

modul   : dsp 6001 CAMAC crate controller 

function : initilize CC #1 

 ) 

PROCEDURE Init_Crate; 

BEGIN 

Crate_Set(Nl); 

Camcl(N64); 

Camcl(Nl); 

END; 

FUNCTION TimeConv 

function : converting time into timer/sealer format 

 } 

FUNCTION TimeConv(timeval:Real): Integer; 

VAR 

TimeBas   : Real; 

NCount    : Integer; 

h 

TimeB    : Longint; 

ContLoop : Boolean; 

BEGIN 

ContLoop:= True; 

timeval:= timeval/1000.0; 

WHILE ContLoop DO 

BEGIN 

TimeB:=Round(Ln(timeval/2.30258)/Ln(10)); 

TimeBas:= Exp(TimeB*Ln(10)); 
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timeval:= timeval/TimeBas'1000.0; 

NCount:= 0; 

WHILE (timeval>2.0) DO 

BEGIN 

timeval:= timeval/2.0; 

NCount:= NCount + 1; 

END; 

j:= Round(32*(timeval-l)+l); 

ContLoop:= False; 

IF (NCount-OvfTab[j])<0 THEN 

BEGIN 

TimeB:=TimeB-l; 

ContLoop:= True; 

END; 

IF (NCount-OvfTab[j])>15 THEN 

BEGIN 

TimeB:=TimeB+l; 

ContLoop:= True; 

END; 

END; 

TimeB:=TimeB+6; 

IF (TimeB<0) OR (TimeB>7) THEN Writeln('ERROR: Time outside range!!!'); 

TimeConv:=(128»MulTab[j])+(8*(NCount-OvfTab[j])+TimeB); 

END; 

PROCEDURE Clear_TimSca 

modul   : sec_ts201 timer/sealer 

input  : subadress 

PROCEDURE Clear_TimSca(subadress,d:Integer); 

BEGIN 

camo(timsca,N9,subadress,d,q/x); 

END; 

PROCEDURE Clear_LAM 

modul   : sec_ts201 timer/sealer 

input  : subadress 

PROCEDURE Clear_LAM(subadress,d: Integer); 
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BEGIN 

camo(timsca,N23,subadress,d,q/x); 

END; 

{- 

PROCEDURE WriteJTimSca 

modul   : sec_ts201 timer/sealer 

input  : subadress 

PROCEDURE Write_TimSca(subadress,d: Integer); 

BEGIN 

camo(timsca,N17,subadress,d,q,x); 

END; 

PROCEDURE Read.Scaler 

modul   : sec_ts201 timer/sealer 

input  : subadress (1,3) 

 } 

PROCEDURE Read_Scaler(subadress:Integer; VAR signal: Integer); 

CONST 

data: LongInt= 0; 

BEGIN 

cami24(timsca,N0,subadress,data,q,x); 

signal:= countinit - data; 

END; 

PROCEDURE Wait_Scaler 

modul   : sec_ts201 timer/sealer 

input  : subadress (1,3) 

PROCEDURE Wait_Scaler; 

VAR 

LTest  : Integer; 

BEGIN 

LTest:=0; 

WHILE LTest=0 DO 

BEGIN 

CAML(LTest); 

END; 
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END; 

PROCEDURE Init TimSca 

PROCEDURE InitJTimSca; 

BEGIN 

Write_TimSca(13,l); 

END; 

f- 
PROCEDURE Reset TimSca 

PROCEDURE ResetJTimSca; 

BEGIN 

Clear_TimSca(O,0); 

Clear_TimSca(l,0); 

END; 

PROCEDURE Start_TimSca 

input:   Time value 

PROCEDURE Start_TimSca(time:Real); 

BEGIN 

Write_TimSca(13,l); 

Write_TimSca(0,TimeConv(time)); 

Write_TimSca(4,l); 

Wait_Scaler; 

Clear_LAM(12,l); 

END; 

PROCEDURE Set_DACl 

modul    : dspE250 DAC, 0...+10V range !!! 

input   : subadress, volt 

PROCEDURE Set_DACl(subadress:Integer; voltiReal); 

VAR 
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digval: Integer; 

CONST 

r2_xx : Real = 32767.0; 

BEGIN 

digval:=(round (volt*r2_xx/5.0 - r2_xx) + 0); 

Camo(dac,N16,subadress,digval,q,x); 

END; 

PROCEDURE Set_DAC2 

modul   : dspE250 DAC, -5...+5V range !!! 

input   : subadress, volt 

 } 

PROCEDURE Set_DAC2(subadress:Integer; volt:Real); 

VAR 

digval: Integer; 

CONST 

r2_xx : Real = 32767.0; 

BEGIN 

digval:=(round (volt*r2_xx/5.0) + 0); 

Camo(dac,N16,subadress,digval,q,x); 

END; 

PROCEDURE Get_ADCl 

modul    : sec_adc, -5...+5V 

input   : subadress 

output  : sig 

 1 
PROCEDURE Get_ADCl (subadress:Integer; VAR signal:Real); 

VAR 

i, 

digval   : Integer; 

CONST 

r2_xx    : Real = 4096.0; 

BEGIN 

FOR i:=l TO NADC DO 

BEGIN 

Cami(adc,N2,subadress/digval,q/x); 

END; 

Signals -1.0*digval*10.0/r2_xx; 
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END; 

PROCEDURE Get_ADC2 

modul    : sec_adc, -10...+10V 

input   : subadress 

output  : sig 

PROCEDURE Get_ADC2 (subadress:Integer; VAR signal:Real); 

VAR 

i, 

digval   : Integer; 

CONST 

r2_xx    : Real = 4096.0; 

BEGIN 

FOR i:=l TO NADC DO 

BEGIN 

Cami(adc,N2,subadress,digval,q,x); 

END; 

Signal:= -1.0*digval*20.0/r2_xx; 

END; 

END. (IMPLEMENTATION OF PCAM2 ( 
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P FDATA.PAS 

{ 

file      : P_FDATA.PAS 

function   : data 

author    : W.Maring 

changes    : 05-07-93 

|$I P_ComOpt} 

UNIT P_FData; 

($IFDEF CPU871 

l$N+} 

f$ELSEj 

($N-) 

($ENDIF[ 

INTERFACE 

(SIFDEF FreqSpec) 

TYPE 

(SIFDEF CPU87) 

Real = Single; 

(SENDIEj 

TArray = Array [0. .2000] of Real; 

TMessRec = RECORD 

EStart, 

EWidth, 

DifEn, 

DelEn, 

Mass, 

URamp, 

SigAverage, 

Signal, 

DarkCnt, 

DetPos, 

IntegTime, 

Difx, 

YScale, 
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XValMax, 

YValMax     : Real; 

XVal, 

YVal, 

ActPlotData : TArray; 

IntSpec, 

IntNum, 

IntRange, 

NumScan, 

NInt, 

NScan       : Integer; 

NormScale, 

NewFile, 

EnExit, 

PltHP       : Boolean; 

Comment     : String[80]; 

PltDirec, 

FileDirec, 

ExeDirec, 

PltFileName, 

FileName     : String[60]; 

PItFil, 

DatFil      : Text; 

END; 

|$ENDIF) 

IMPLEMENTATION 

END. 
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P GRAF.PAS 

file      : P_GRAF.PAS 

function   : plotting of data 

author    : W.Maring 

files     : P_GrafIn.Pas (inividual settings) 

changes    : 09/02/93 

14/05/93   (input in GRAFIC mode) 

($1 P_ComOpt} 

UNIT P_Graf; 

($IFDEF CPU87} 

($N+) 

($ELSE| 

f$N-) 

{$ENDIF| 

INTERFACE 

USES 

Crt, 

Dos, 

Graph, 

Printer, 

($IFDEF Masspec) 

P_MData, 

($ENDIF) 

($IFDEF Augspec( 

P_AData, 

($ENDIF( 

j$IFDEF Angspec) 

P_AnData, 

($ENDIF( 

($IFDEF Freqspecl 

P_FData, 

($ENDIF( 

IO_Check; 
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TYPE 

{$IFDEF CPU87) 

Real = Single; 

{$ENDIF) 

TStr2       = Stringß]; 

TStr6       = String[6]; 

TStrlO      = String[10]; 

TStr30      = String[30]; 

TStr80      = String[80]; 

TGrafRec    = RECORD 

PlotType   : TStrlO; 

GDirec    : TStr30; 

Color, 

BkColor, 

ScalCount, 

ScalCountCorr, 

ScalDigCount, 

XDigl, 

XDig2, 

XPix, 

YPix, 

XOffset, 

YOffset, 

GlattNum, 

NoiseLevel, 

MenuX, 

MenuY     : Integer; 

YNorm, 

YNormSav, 

XPixFac, 

YPixFac, 

XScallnt, 

XScallntLoc, 

YScallnt, 

XScalStart, 

YScalStart: Real; 

EnGrafics, 

EnHrdCpy, 

PltHP     : Boolean; 
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VAR 

XPltFac, 

YPltFac, 

DifX        : Real; 

ii, 

StrLength, 

Gd, 

Gm, 

ErrCode, 

ValCode     : Integer; 

Ch : Char; 

Inputs tr, 

MenuStr     : TStr80; 

GData       : TGrafRec; 

ExitSave    : Pointer; 

CONST 

{$IFDEF Masspec) 

YNeg        = -0.25; 

YPos        = 4.0; 

YTop        = 0.15; 

{$ENDIF1 

{$IFDEF Augspec) 

YNeg        = -5.25; 

YPos        = 5.25; 

YTop        = 0.2; 

($ENDIF) 

($IFDEF Angspec) 

YNeg = -100; 

YPos = 1000; 

YTop        = 50; 

($ENDIF) 

($IFDEF Freqspecl 

YNeg = -100; 

YPos = 1000; 

YTop        - 50; 
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j$ENDIF) 

XPlt : Integer = 8800; 

YPlt : Integer = 5950; 

PltOffsetX     : Integer = 1000; 

PltOffSetY     : Integer = 1000; 

XPltTickHeight : Integer = 105; 

YPItTickHeight : Integer = 105; 

XPixTickHeight : Integer = 5; 

YPixTickHeight : Integer = 5; 

EndTrue     : Boolean = False; 

Bpage       : Array [0..1] of Byte=(l,0);    ( Fuer Page-Switching ( 

Buf : Byte = 1; 

PROCEDURE RunTimeError; 

PROCEDURE PltSetColor(PltColor: Integer;VAR Fil: Text); 

PROCEDURE PltLineType(PltLine: Integer;VAR Fil: Text); 

PROCEDURE PltPlotStart(VAR Fil: Text); 

PROCEDURE PltPlotStop(VAR Fil: Text); 

PROCEDURE HrdCpy (VAR OptChar: Char); 

PROCEDURE Hardcopy(VAR PlotData : TMessRec); 

PROCEDURE GetXYValMax(VAR PlotData: TMessRec); 

PROCEDURE PltLineXY(XPl,YPl,XP2,YP2: Integer;VAR Fil: Text); 

PROCEDURE PLineXY(XPl,YPl,XP2,YP2: Integer; GData: TGrafRec); 

PROCEDURE PltWriteXY(XPl,YPl: Integer; PlotString: TStr80;VAR Fil: Text); 

PROCEDURE PWriteXY(XPl,YPl: Integer; PlotString: String; GData: TGrafRec); 

PROCEDURE PltMoveToXY(XPl,YPl: Integer;VAR Fil: Text); 

PROCEDURE PMoveToXY(XPl,YPl: Integer; GData: TGrafRec); 

PROCEDURE PltCircleXY(XPl,YPl,Radius: Integer;VAR Fil: Text); 

PROCEDURE PCircleXY(XPl,YPl,Radius: Integer; GData: TGrafRec); 

PROCEDURE XPlotTicks(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

PROCEDURE YPlotTicks(VAR PlotData: TMessRec; GData: TGrafRec); 

PROCEDURE XScaling(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

PROCEDURE YScaling(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

PROCEDURE PlotFrame(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

PROCEDURE ClearMenuStr(VAR GData: TGrafRec); 

PROCEDURE PMenuStr(VAR GData: TGrafRec); 

PROCEDURE SmoothData(VAR PlotData: TMessRec; VAR GData: TGrafRec); 
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PROCEDURE CutNoise(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

PROCEDURE HPGLFile(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

PROCEDURE NextFile(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

PROCEDURE DataPlot(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

PROCEDURE GrafInit(VAR GData: TGrafRec);    (file: P_GrafIn.Pas) 

PROCEDURE StartGraphics(VAR GData: TGrafRec); 

PROCEDURE PlotLoop(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

PROCEDURE StopGraphics(VAR GData: TGrafRec); 

IMPLEMENTATION 

PROCEDURE RunTimeError 

($F+) 

PROCEDURE RunTimeError; 

VAR 

Ch    : Char; 

BEGIN 

ExitProc:= ExitSave; 

IF GData.EnGrafics THEN 

BEGIN 

PWriteXY(100,100;>» RunTimeError, press any key ! ',GData); 

Ch:= Readkey; 

CloseGraph; 

END; 

Halt; 

END; 

($F-| 

PROCEDURE PltSetColor 

PROCEDURE PltSetColor(PltColor: Integer;VAR Fil: Text); 

BEGIN 

Write(Fii;SP'/Chr(PltColor+$30);;'); 

END; 
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,  

PROCEDURE PltLineType 

PROCEDURE PltLineType(PltLine: Integer;VAR Fil: Text); 

BEGIN 

IF PltLine < 0 THEN 

Write(Fil/LT;') 

ELSE 

Write(Fii;LT',Chr(PltLine+$30);;'); 

END; 

PROCEDURE PltPlotStart 

PROCEDURE PltPlotStart(VAR Fil: Text); 

BEGIN 

Write(Fil,Chr(27)/
,E'/Chr(27),,%0B7IN;');    {Set: HPGL ) 

Write(Fil/RO90;'); (Set: Portrait 1 

PltSetColor(l,Fil); 

END; 

{- 

PROCEDURE PltPlotStop 

PROCEDURE PltPlotStop(VAR Fil: Text); 

BEGIN 

Write(Fii;iN;SPO;'); 

Write(Fil/Chr(27)/'%0A'/Chr(27);E');    {Set: PCL) 

Close(Fil); 

END; 

PROCEDURE HrdCpy 

PROCEDURE HrdCpy (VAR OptChar: Char); 

BEGIN 
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inline 

($06/                    ( push es                           ) 

$55/                    ( push bp                           ) 

$c4/$be/optchar/{ les di,optchar[bp]         ( 

$26/$8a/$ld/    ( mov bl,es:[di]  ) 

$31/$c0/             ( xor ax,ax                        } 

$8e/$c0/             { mov es,ax                        } 

$bd/$16/$00/    ( mov bp,16                       ) 

$26/$8b/$46/$00/{ mov ax,es:[bp]) 

$8e/$c0/             ( mov es,ax                        ) 

$bd/$30/$01/    ! mov bp,130                      } 

$26/$88/$5e/$00/( mov [bp],bl                      ( 

$cd/$05/            ( int 5                              } 

$5d/                    { pop bp                            ) 

$07);                    { 

END; 

pop es                             } 

PROCEDURE Hardcopy 

-} 

PROCEDURE Hardcopy(VARPlotData : TMessRec); 

VAR 

c     : Char; 

Gesamt: Real; 

Steps : Integer; 

BEGIN 

WITH PlotData DO 

BEGIN 

Assign(lst,'LPTl'); 

Rewrite(lst); 

writeln(lst,chr(27)/3',chr(24));    ( SET Graphics Linespace } 

c:=chr(Bpage[Buf]+49); 

hrdcpy(c); 

writeln(lst,chr(27)/2'); 

FOR ii:=l TO 35 DO 

BEGIN 

writeln(lst,"); 

END; 

Close(lst); 

END; 

( START Text Linespace ) 
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END; (Ausgabe weiterer Infos: PROCEDURE Drucken/Mes4incl.pas)( 

{- 

PROCEDURE GetXYValMax 

-) 
PROCEDURE GetXYValMax(VARPlotData: TMessRec); 

VAR 

ii       : Integer; 

BEGIN 

WITH PIotData DO 

BEGIN 

XValMax:= 0.0; 

YValMax:= 0.0; 

FOR ii:=0 TO IntNum DO 

BF YVal[ii]>YValMax THEN 

BEGIN 

XValMax:= XVal[ii]; 

YValMax:= YVal[ii]; 

END; 

IF YValMAx=0.0 THEN YValMax:=1.0; 

END; 

END; 

(- 
PROCEDURE PItLineXY: 

■-! 

PROCEDURE PltLineXY(XPl,YPl,XP2,YP2: Integer;VAR Fil: Text); 

VAR 

Xstr, 

Ystr   :TStr6; 

BEGIN 

PltMoveToXY(XPl,YPl,Fil); 

Str(1.0*(XP2+PltOff3etX):6:2,Xstr); 

Str(l .0*(YP2+PltOf fSetY) :6:2,Ystr); 

Write(Fii;PD',Xstr/;,Ystr;;'); 

END; 
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PROCEDURE PLineXY: 

PROCEDURE PLineXY(XPl,YPl,XP2,YP2: Integer; GData: TGrafRec); 

BEGIN 

WITH GData DO 

BEGIN 

Line(XPl +XOffset/YPl +YOffset,XP2+XOffset,YP2+YOf fset); 

END; 

END; 

PROCEDURE PltWriteXY: 

PROCEDURE PltWriteXY(XPl,YPl: Integer; PlotString: TStr80;VAR Fil: Text); 

BEGIN 

PltMoveToXY(XPl,YPl,Fil); 

Write(Fil;LB',PlotString/Chr(3)); 

END; 

PROCEDURE PWriteXY: 

PROCEDURE PWriteXY(XPl,YPl: Integer; PlotString: String; GData: TGrafRec); 

BEGIN 

WITH GData DO 

BEGIN 

OutTextXY(XPl+XOffset,YPl+YOffset,PlotString); 

END; 

END; 

PROCEDURE PltMoveToXY 

-1 
PROCEDURE PltMoveToXY(XPl,YPl: Integer;VAR Fil: Text); 

VAR 

XStr, 
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YStr: TStr6; 

BEGIN 

Str(1.0*(XPl+PltOffSetX):6:2,XStr); 

Str(1.0*(YPl+PltOffSetY):6:2,YStr); 

WriteCFil/PU^XStr/^YStr/;'); 

END; 

I- 
PROCEDURE PMoveToXY 

PROCEDURE PMoveToXY(XPl,YPl: Integer; GData: TGrafRec); 

BEGIN 

WITH GData DO 

BEGIN 

MoveTo(XPl+XOffset,YPl+YOffset); 

END; 

END; 

PROCEDURE PltCircleXY 

PROCEDURE PltCircleXY(XPl,YPl,Radius: Integer;VAR Fil: Text); 

VAR 

PltStr: TStr2; 

RStr :TStr6; 

BEGIN 

PltMoveToXY(XPl-38,YPl,Fil); 

Str(16.0*(Radius):3:l,RStr); 

{ Write(Fil/Cr,RStr/;');) 

PltStr:='.'; 

Write(Fil,'LB',PltStr,Chr(3)); 

END; 

PROCEDURE PCircleXY 

PROCEDURE PCircleXY(XPl,YPl,Radius: Integer; GData: TGrafRec); 

BEGIN 
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WITH GData DO 

BEGIN 

Circle(XPl+XOffset,YPl+YOffset,Radius); 

END; 

END; 

PROCEDURE XPlotTicks 

PROCEDURE XPlotTicks(VAR PlotData: TMessRec;VAR GData: TGrafRec); 

VAR 

ii, 

XPixTO, 

XPltTO, 

YPixTO, 

YPltTO, 

YPixTl, 

YPltTl: Integer; 

LStr  :TStrlO; 

BEGIN 

WITH PlotData, GData DO 

BEGIN 

FOR ii:=0 TO ScalCount-1+ScalCountCorr DO 

BEGIN 

XPixTO:=Round((XScalStart+ii*XScalIntLoc)*XPixFac); 

YPixT0:= YPix; 

YPixTl:= YPix-YPixTickHeight; 

IF (XPixTO<XPix+l) THEN 

BEGIN 

PMoveToXY(XPixTO,YPixTO/GData); 

PLineXY(XPixTO,YPixTO,XPixTO,YPixTl,GData); 

Str((1.0*ii*XScalIntLoc+XVal[0] 

+XScalStart):(XDigl+ScalDigCount):(XDig2+ScalDigCount),LStr); 

PWriteXY(XPixT0-10,(YPix+10),LStr,GData); 

IF PltHP THEN 

BEGIN 

XPltTO:=Round((XScalStart+ii*XScalIntLoc)*XPltFac); 

YPltT0:= 0; 

YPltTl:= YPltTickHeight; 

PltMoveToXY(XPltTO,YPltTO,PItFU); 

PltLineXY(XPltTO,YPltTO,XPltTO,YPltTl,PltFil); 
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Str((1.0*ii*XScalIntLoc+XVal[0] 

+XScalStart):(XDigl+ScalDigCount):(XDig2+ScalDigCount),LStr); 

PltWriteXY(XPltT0-190,-320,LStr,PltFil); 

END; 

END; 

END; 

END; 

END; 

I- 
PROCEDURE YPlotTicks 

PROCEDURE YPlotTicks(VAR PlotData: TMessRec; GData: TGrafRec); 

VAR 

ii, 

XPixTO, 

XPltTO, 

YPixTO, 

YPltTO, 

XPixTl, 

XPltTl : Integer; 

LStr   :TStrlO; 

BEGIN 

WITH PlotData, GData DO 

BEGIN 

FOR ii:=0 TO ScalCount DO 

BEGIN 

YPixT0:= YPix+Round(YNeg*YPixFac) 

-Round((YScalStart+ii*YScalInt)*YPos/100.0*YPixFac); 

XPixT0:= 0; 

XPixTl:= YPixTickHeight; 

PMoveToXY(XPixTO,YPixTO,GData); 

PLineXY(XPixTO,YPixTO,XPixTl,YPixTO,GData); 

Str((1.0*(ii+ScalCountCorr)*YScalInt):3:0,LStr); 

PWriteXY(-30,YPixT0-2,LStr,GData); 

IF PltHP THEN 

BEGIN 

YPltT0:= -Round(YNeg*YPltFac) 

+Round((YScalStart+ii*YScalInt)*YPos/100.0*YPltFac); 

XPltT0:= 0; 
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XPltTl:= YPltTickHeight; 

PltMoveToXY(XPltTO,YPltTO,PltFil); 

PltLineXY(XPltTO,YPltTO,XPltTl,YPltTO,PltFil); 

Str((1.0*(ii+ScalCountCorr)*YScalInt):3:0,LStr); 

PItWriteXY(-440,YPltT0-50,LStr,PltFil); 

END; 

END; 

END; 

END; 

PROCEDURE XScaling 

-) 
PROCEDURE XScaling(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

VAR 

ScalMag, 

ScalTest    ; Real; 

ScalOK      : Boolean; 

BEGIN 

WITH PlotData, GData DO 

BEGIN 

ScalOk:= False; 

ScalDigCount:= 0; 

XScalIntLoc:= XScallnt; 

ScalMag:= 1.0; 

WHILE NOT ScalOK DO 

BEGIN 

ScalCount:= 0; 

ScalCountCorr:= 0; 

ScalTest:= 10; 

WHILE ScalTest>l DO 

BEGIN 

ScalTest:= Abs(Abs(XVal[0])-ScalCount*XScalIntLoc) /XScallntLoc; 

ScalCount:= ScalCount+1; 

END; 

IF XVal[0]>0.0 THEN 

BEGIN 

XScalStart:=-XVaI[0]+XScalIntLoc*ScalCount; 

END 

ELSE 
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BEGIN 

XScalStart:=-Abs(XVal[0])+XScalIntLoc*ScalCount; 

END; 

IF XScalStart<XScalIntLoc/10 THEN ScalCountCorr:= 1; 

ScalCount:=Round(Int(ScalMag*(XVal[IntNum]-XVal[0]+XScalStart)) 

/(ScalMag*XScalIntLoc)); 

IF (Abs(XVal[IntNum]-XVal[0])<2.0*XScalIntLoc) THEN (2.0) 

BEGIN 

XScalIntLoc:= XScalIntLoc/10.0; 

ScalMag:= ScalMag*10.0; 

ScalDigCount:= ScalDigCount+1; 

END 

ELSE 

BEGIN 

ScalOK:= True; 

END; 

END; 

IF XScalIntLoc>0.9 THEN 

ScalDigCount.= ScaIDigCount-1 

ELSE 

ScalDigCount:= ScalDigCount-2; 

XPlotTicks(PlotData,GData); 

END; 

END; 

PROCEDURE YScaling 

PROCEDURE YScaling(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

VAR 

ScalTest  : Real; 

BEGIN 

WITH PlotData, GData DO 

BEGIN 

YScalStart:= 0.0; 

ScalCountCorr:= 0; 

ScalCount:= 5; 

YPlotTicks(PlotData,GData); 
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END; 

END; 

PROCEDURE PlotFrame 

PROCEDURE PLotFrame(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

VAR 

LStr     : TStrlO; 

DatTimStr: TStr30; 

BEGIN 

WITH PlotData, GData DO 

BEGIN 

PLineXY(O,O,XPix,0,GData); 

PLineXY(XPix,0,XPix,YPix,GData); 

PLineXY(XPix,YPix,0,YPix,GData); 

PLineXY(0,YPix,0,0,GData); 

PWriteXY(XPix-150,10,FileName,GData); 

IFNormScaleTHEN 

BEGIN 

Str(YScale*YNorm:4:2,LStr); 

END 

ELSE 

BEGIN 

Str(YScale:4:2,LStr); 

END; 

PWriteXY(XPix-150,20/x'+LStr,GData); 

Str(YNormSav:5:2,LStr); 

PWriteXY(XPix-150,30,'YNorm:'+LStr,GData); 

IF NormScale THEN 

BEGIN 

Str((YValMax/(100.0*YScale)):10,LStr); 

END 

ELSE 

BEGIN 

Str((YValMax*YNormSav/(100.0*YScale)):10,LStr); 

END; 

PWriteXY(XPix-150/40;Sig:x'+LStr,GData); 

Str(GlattNum:l,LStr); 

PWriteXY(XPix-150,50;Smoothed Ch.: '+LStr,GData); 
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Str(NoiseLevel:l,LStr); 

PWriteXY(XPix-150Ä'Noiselevel:'+LStr,GData); 

Str(XVal[0]:4:l,LStr); 

($IFDEF Freqspec) 

Str(XVal[0]:6:3,LStr); 

|$ENDIF) 

PWriteXY(-10,-10,LStr,GData); 

($IFDEF Freqspec} 

Str(EStart:9:3,LStr); 

PWriteXY(50,-10,'('+LStr+'),
/GData); 

($ENDIF) 

Str(XVal[IntNum]:4:l,LStr); 

($IFDEF Freqspec) 

Str(XVaI[IntNum]:6:3,LStr); 

j$ENDIF) 

PWriteXY(XPix-20/-10,LStr,GData); 

GetDateTime(DatTimStr); 

PWriteXY(XPix-160,-20,DatTimStr,GData); 

PWriteXY(0,-20,Comment,GData); 

IF PltHP THEN 

BEGIN 

PltLineXY(0,0,XPlt,0,PltFil); 

PltLineXY(XPlt,0,XPlt,YPlt,PltFil); 

PltLineXY(XPlt/YPlt/0,YPlt/PltFiI); 

PltLineXY(0,YPlt,0,0,PltFil); 

PltWriteXY(XPlt-2000,YPlt-340,FiIeName,PltFil); 

Str(YScale:5:l,LStr); 

PltWriteXYCXPlt^OOO^Plt-SlO/x'+LStr^ltFil); 

Str(YNormSav:5:2,LStr); 

PltWriteXY(XPlt-2000,YPlt-680;Sig:x'+LStr,PltFil); 

Str(GlattNum:l,LStr); 

PltWriteXY(XPlt-2000,YPlt-750;Smoothed Ch.: '+LStr,PltFil); 

Str(NoiseLevel:l,LStr); 

PltWriteXY(XPix-2000/YPlt-820,,Noiselevel:,+LStr,PltFil); 

Str(XVaI[0]:6:3,LStr); 

PltWriteXY(-160,YPlt+80,LStr,PltFil); 

(SIFDEF Freqspec) 

Str(EStart:9:3,LStr); 

PltWriteXY(480,YPlt+80/
,('+LStr+'),,PltFil); 

($ENDIF) 
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Str(XVal[IntNum]:6:3,LStr); 

PltWriteXY(XPlt-240,YPlt+80,LStr,PltFil); 

PltWriteXY(XPlt-2050,YPlt+250,DatTimStr/PltFil); 

PltWriteXY(0,YPlt+250,Comment,PltFiI); 

END; 

END; 

END; 

(  

PROCEDURE ClearMenuStr 

PROCEDURE ClearMenuStr(VAR GData: TGrafRec); 

BEGIN 

WITH GData DO 

BEGIN 

SetColor(BkColor); 

PWriteXY(0,YPix+25,MenuStr,GData); 

SetColor(Color); 

END; 

END; 

PROCEDURE PMenuStr 

PROCEDURE PMenuStr(VAR GData: TGrafRec); 

BEGIN 

WITH GData DO 

BEGIN 

PWriteXY(0,YPix+25,MenuStr,GData); 

END; 

END; 

(  

PROCEDURE SmoothData: using Savitzky-Golay-algorithmus 

PROCEDURE SmoothData(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

VAR 
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s : Integer; 

SmoothBuf  : Real; 

Glatt, 

Abl_l, 

Abl_2      : Array [-20..20] of Real; 

LStr       : TStrlO; 

BEGIN 

WITH PlotData, GData DO 

BEGIN 

ClearMenuStr(GData); 

PReadInt('»> Chan, l&r to be smoothed? : ',-20,20,GlattNum,MenuX,MenuY,Color,BkColor,MenuStr); 

FOR s:=-GlattNum TO GlattNum DO 

BEGIN 

Glatt[s] := 3*(3*sqr(GlattNum)+3*GlattNum-l-5*sqr(s)) / 

((2»GlattNum+3)*(2*GlattNum+l)*(2*GlattNum-l)); 

( 

ClearMenuStr(GData); 

Str(Glatt[s]:10:4,LStr); 

Menus tr:= LStr; 

PMenuStr(GData); 

) 

Abl_l[s]:= 3*s / 

((2*GlattNum+l)*(GlattNum+l)*GlattNum); 

Abl_2[s]:= 30*(3*sqr(s)-GlattNum*(GlattNum+l)) / 

((2*GlattNum+3)*(2*GlattNum+l)*(2*GlattNum-l)*(GlattNum+l)*GlattNum); 

END; 

SmoothBuf:= 0.0; 

FOR ii:=GlattNum+l TO IntNum-GlattNum-1 DO 

BEGIN 

FOR s:=-GlattNum TO GlattNum DO 

BEGIN 

SmoothBuf:=SmoothBuf+Glatt[s]*YVal[s+ii]; 

END; 

ActPlotData[ii]:= SmoothBuf; 

SmoothBuf:= 0.0; 

END; 

FOR ii:=0 TO GlattNum DO ActPlotData[ii]:= -1.0*NoiseLevel; 

FOR ii:=IntNum-GlattNum TO IntNum DO ActPlotData[ii]:= -1.0*NoiseLevel; 

END; 

END; 
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PROCEDURE CutNoise:     substracts noiselevel 

PROCEDURE CutNoise(VAR PIotData: TMessRec; VAR GData: TGrafRec); 

VAR 

ii    : Integer; 

BEGIN 

WITH PlotData,GData DO 

BEGIN 

ClearMenuStr(GData); 

PReadInt('»> Noise level: VlO^OOOC^NoiseLeveLMenuX^enuY^olo^BkColo^MenuStr); 

FOR ii:=0 TO IntNum DO 

BEGIN 

YVal[ii]:= YVal[ii]-NoiseLevel; 

ActPlotData[ii]:= YVal[ii]; 

{     IF SmoothedData[ii]<0.0 THEN SmoothedData[ii]:=0.0;) 

END; 

GlattNum:= 1;     ( CutNoise is using the ORIGINAL data in YVal!) 

END; 

END; 

PROCEDURE HPGLFile 

-i 
PROCEDURE HPGLFile(VAR PIotData: TMessRec; VAR GData: TGrafRec); 

BEGIN 

WITH PIotData, GData DO 

BEGIN 

PltHP:= True; 

ClearMenuStr(GData); 

POurputFile('»> Pit file name: VPltFitPltDirecPltFileName 

,MenuX,MenuY,Color,BkColor,MenuStr); 

IF PltFileName=Esc THEN 

BEGIN 

EnExit:= True; 

EnGrafics:= False; 

CloseGraph; 

NewFile:= False; 
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Exit; 

END; 

PltPlotStart(PltFil); 

ClearDevice; 

END; 

END; 

{  

PROCEDURE YScaleSet 

-I 
PROCEDURE YScaleSet(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

BEGIN 

WITH PlotData, GData DO 

BEGIN 

ClearMenuStr(GData); 

PReadReal('»>YScaIe:',lE-2/lE2,Yscale/MenuX/MenuY,Color/BkColor;MenuStr); 

NormScale:= False; 

YNorm:= 1.0; 

END; 

END; 

PROCEDURE NextFile 

PROCEDURE NextFile(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

BEGIN 

WITH PlotData, GData DO 

BEGIN 

ClearMenuStr(GData); 

PInputFile('»> New File: VDatFil,FileDirec,FileName,MenuX,MenuY,Color,BkColor,MenuStr); 

IF FileName=Esc THEN 

BEGIN 

EnExit:= True; 

EnGrafics:= False; 

CloseGraph; 

NewFile:= False; 

Exit; 

END; 

EndTrue:= True; 
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NewFile:= True; 

END; 

END; 

PROCEDURE DataPlot 

PROCEDURE DataPlot(VARPlotData: TMessRec; VARGData: TGrafRec); 

VAR 

i, 

XPixO, 

YPixO, 

XPixP, 

YPixP, 

XPltO, 

YPltO, 

XPltP, 

YPltP : Integer; 

DelX   :Real; 

BEGIN 

WITH PlotData, GData DO 

BEGIN 

DifX:= XVal[IntNum]-XVal[0]; 

DelX:=(XVal[IntNum]-XVal[0])/IntNum; 

XPixFac:= XPix/(1.0*DifX); 

XPltFac- XPlt/(1.0*DifX); 

XScaling(PlotData,GData); 

YScaling(PlotData,GData); 

XPixO:= 0; 

YPixO:=YPix-Round(-YNeg*YPixFac*YScale); 

XPltO:= 0; 

IF (-YNeg*YPltFac*YScale)<YPIt THEN 

BEGIN 

YPltO:=Round(-YNeg*YPltFac*YScale); 

END 

ELSE 

BEGIN 

YPltO:= YPlt; 
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END; 

IF YPixO<0 THEN YPixO:= 0; 

IF YPltO<0 THEN YPltO:= 0; 

PMoveToXY(XPixO/YPixO,GData); 

IF PltHP THEN 

BEGIN 

PltMoveToXY(XPltO,YPltO,PltFiI); 

END; 

FOR i:=0 TO IntNum DO 

BEGIN 

IF NormScale THEN 

BEGIN 

IF (ActPlotData[i]»YScale*YNorm)<2.0*YPos THEN 

BEGIN 

YPixP:=YPix-Round((ActPlotData[i]*YScale*YNorm-YNeg)»YPixFac); 

YPltP:= Round((ActPlotData[i]*YScale»YNorm-YNeg)*YPltFac); 

END; 

END 

ELSE 

BEGIN 

IF (ActPlotData[i]*YScale*YNorm)<2.0*YPos THEN 

BEGIN 

YPixP:=YPix-Round((ActPlotData[i]*YScale-YNeg)*YPixFac); 

YPltP:=Round((ActPlotData[i]*YScale-YNeg)*YPltFac); 

END; 

END; 

IF (ActPlotData[i]*YScale*YNorm)>(YPos+0.1) THEN 

BEGIN 

YPixP:= 0; 

YPltP:= YPlt; 

END; 

IF (ActPlotData[i]*YScale*YNorm)<YNeg THEN 

BEGIN 

YPixP:= YPix; 

YPItP:= 0; 

END; 

IF PlotType='Histo' THEN 

BEGIN 

XPixP:= Round((XVal[i]-XVal[0]+0.5*DelX)*XPixFac); 

XPltP:=Round((XVal[i]-XVal[0]+0.5*DelX)*XPltFac); 

IF XPixP>XPix THEN 
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BEGIN 

XPixP:= XPix; 

XPltP:= XPlt; 

END; 

PLineXY(XPixO,YPixO,XPixO,YPixP,GData); 

PLineXY(XPixO,YPixP,XPixP,YPixP,GData); 

IF PltHP THEN 

BEGIN 

PltLineXY(XPltO,YPltO,XPltO,YPltP,PltFil); 

PltLineXY(XPltO,YPltP,XPltP,YPltP,PltFil); 

END; 

END; 

IF PlotType='Point' THEN 

BEGIN 

XPixP:=Round((XVal[i]-XVal[0])*XPixFac); 

XPltP:=Round((XVal[i]-XVal[0])*XPltFac); 

PCircleXY(XPixP,YPixP,l,GData); 

IF PltHP THEN 

BEGIN 

PltCircleXY(XPltP,YPltP,l,PltFil); 

END; 

END; 

XPixO:= XPixP; 

YPixO:= YPixP; 

XPltO:= XPltP; 

YPltO:= YPltP; 

END; 

END; 

END; 

($1 P_GrafIn)    (file: P_Grafln.Pas) 

(  

PROCEDURE StartGraphics 

PROCEDURE StartGraphics(VAR GData: TGrafRec); 

BEGIN 

WITH GData DO 

BEGIN 

Gd:= Detect; 
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Graflnit(GData); 

InitGraph(Gd,Gm,GDirec); 

EnGrafics:= True; 

ErrCode:= GraphResuIt; 

IF ErrCode <> grOK THEN 

BEGIN 

Writeln('Graphics error:', GraphErrorMsg(ErrCode)); 

END; 

END; 

END; 

PROCEDURE StopGraphics 

PROCEDURE StopGraphics(VAR GData: TGrafRec); 

BEGIN 

WITH GData DO 

BEGIN 

CloseGraph; 

END; 

END; 

PROCEDURE PlotLoop 

PROCEDURE PlotLoop(VAR PlotData: TMessRec; VAR GData: TGrafRec); 

VAR 

Ch   :Char; 

BEGIN 

WITH PlotData,GData DO 

BEGIN 

ExirSave:= ExitProc; 

ExitProc:= ©RunTimeError; 

PltHP:= False; 

YNorm:= 1.0; 

GlattNum:= 1; 

NoiseLevel:= 0; 
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Gd:= Detect; 

Graflnit(GData); 

InitGraph(Gd,Gm/GDirec); 

EnGrafics:= True; 

ErrCode:= GraphResult; 

IF ErrCode = grOK THEN 

BEGIN 

WHILE NOT EndTrue DO 

BEGIN 

ClearDevice; 

SetColor(CoIor); 

SetBkColor(BkColor); 

GetXYValMax(PlotData); 

IF NormScale THEN 

BEGIN 

YNorm:= YPos/YValMax; 

YNormSav:= YNorm; 

END; 

YPixFac:=YPix/(1.0*(YTop+YPos-YNeg)); 

YPltFac:=YPlt/(1.0*(YTop+YPos-YNeg)); 

PlotFrame(PlotData, GData); 

DataPlot(PlotData, GData); 

IF EnHrdCpy THEN 

BEGIN 

MenuStr:='(S)moothing/(H)ardcopy/(Y)scale/H(P)GLFile/(N)ext' 

+'/N(o)ise/(E)xit:'; 

PMenuStr(GData); 

REPEAT 

Ch:= ReadKey; 

UNTIL Ch IN ['syS'/h'/H'/y'/Y'/e'/E'/n'/N'/p'/P' 

/o'/O']; 

END 

ELSE 

BEGIN 

MenuStr:='(S)moothing/(Y)scale/H(P)GLFile/(N)ext/N(o)ise/(E)xit:'; 

PMenuStr(GData); 

REPEAT 

Ch:= ReadKey; 

UNTIL Ch IN ['sysyy'/YyeyEynyN'/pypyo'/O']; 
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1 

END; 

MenuStr:= MenuStr+Ch; 

PMenuStr(GData); 

CASE Ch OF 

•h'/H': BEGIN 

Hardcopy(PlotData); 

END; 

's'/S': BEGIN 

SmoothData(PlotData,GData); 

END; 

y,'Y': BEGIN 

YScaleSet(PlotData,GData); 

END; 

'n'/N': BEGIN 

NextFile(PlotData,GData); 

END; 

'p'/P: BEGIN 

HPGLFile(PlotData,GData); 

END; 

'o'/O': BEGIN 

CutNoise(PlotData,GData); 

END; 

'e'/E': BEGIN 

NewFile:= False; 

EndTrue:= True; 

IF PltHP THEN 

BEGIN 

PltPlotStop(PltFil); 

PItHP:= False; 

END; 

END; 

END; (CASE Ch OF...) 

END; 

CloseGraph; 

EndTrue:= False; 

ExitProc:= ExitSave; 

END; 
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ELSE 

BEGIN 

Writeln('Graphics error:', GraphErrorMsg(ErrCode)); 

END; 

) 

END; 

END; 

END.       I IMPLEMENTATION of P_Graf) 
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P MDATA.PAS 

file      : P_MDATA.PAS 

function   : data 

author    : W.Maring 

changes    : 12.02.93 

($1 P_ComOpt} 

UNIT P_MData; 

{$IFDEF CPU87} 

($N+) 

($ELSE) 

($N-| 

($ENDIF1 

INTERFACE 

{$IFDEF Masspec) 

TYPE 

($IFDEF CPU87) 

Real = Single; 

{$ENDIF1 

TArray = Array [0..2000] of Real; 

TMessRec = RECORD 

LowMass, 

HighMass, 

DifMass, 

DelMass, 

Mass, 

URamp, 

SigAverage, 

Signal, 

Difx, 

YScale, 

XValMax, 

YValMax     : Real; 

XVal, 
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YVal, 

ActPlotData : TArray; 

IntNum, 

IntRange, 

NumScan, 

NInt, 

NScan       : Integer; 

NormScale, 

NewFile, 

EnExit, 

PltHP       : Boolean; 

Comment     : String[80]; 

PltDirec, 

FileDirec, 

ExeDirec, 

PltFileName, 

FileName     : String[60]; 

PltFil, 

DatFil      : Text; 

END; 

{$ENDIF| 

IMPLEMENTATION 

END. 
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PAN_SCAN.PAS 

file      : PAn_Scan.PAS 

function   : recording and plotting of angular spectra 

author    : B.Ungerer (MPI Goe), W.Maring 

files     : P_AnData, 

IO_Check.PAS 

changes    : 22.10.88 (BU) 

09/02/93 (WM) 

) 

(SDEFINE AngSpecl 

PROGRAM PFr_Scan; 

($IFDEF CPU87| 

($N+) 

|$ELSE) 

i$N-| 

($ENDIF| 

|$M 8192,0,65360} ( Leave memory for child process | 

USES 

Crt, 

Dos, 

Printer, 

P_AnData, 

P_Cam2, 

P_Graf, 

IO_Check; 

TYPE 

ISIFDEF CPU87) 

Real = Single; 

j$ENDIFl 

VAR 

MessData    : TMessRec; 

DirListVar  :String[20]; 



247 
Ch : String[l]; 

CurDir, 

SavDir       : String; 

ChMenul      : Char; 

EnExitProg   : Boolean; 

CONST 

Esc = Char(27); 

($1 P_AngIn)    {file: P_AngIn.Pas| 

) Main) 

BEGIN 

WITH MessData, GData DO 

BEGIN 

InitData(MessData); 

REPEAT 

ClrScr; 

Writeln; 

Writeln('P A n _ S c a n '); 

WritelnC ') 

Writeln; 

WritelnC   1 —> record angular spectra'); 

WritelnC   2 -> plot angulur spectra'); 

WritelnC   3 -> c:\sputter\angdat listing'); 

Writeln; 

WritelnC   E -> End'); 

Writeln; 

Write('»> Enter menu number :'); 

REPEAT 

ChMenul:= ReadKey; 

UNTIL ChMenul IN [Esc,T..'3','e7E']; 

IF ChMenul=Esc THEN Exit; 

Writeln(ChMenul); 

REPEAT 

CASE ChMenul OF 

T: BEGIN 

GetDir(0,CurDir); 
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SavDir:= CurDir; 

($1-1 

ChDir('c:\basicdir\new'); 

IF IOResultoO THEN 

BEGIN 

Writeln('Cannot find c:\basicdir\new'); 

END; 

l$I+t 

SwapVectors; 

Exec(GetEnv('COMSPEC),7C'+ 

'c:\basicdir\new\hbasicangscan.bas'); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

WriteIn('DOSError: ',DosError); 

END; 

ChDir(SavDir); 

END; 

7': BEGIN 

SwapVectors; 

Exec(GetEnv(GOMSPEC');/C'+ExeDirec+'pangplot.exe'); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

WriteIn('DOSError: ',DosError); 

END; 

END; 

'3': BEGIN 

Writeln; 

ReadStr('DirListVar: ',DirListVar); 

SwapVectors; 

Exec(GetEnv('COMSPEC')/yC '+'dir/w/p '+FileDirec+DirListVar); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln(*DOSError: ',DosError); 

END; 

Writeln; 

Write('»> Press any key to continue!'); 

Ch:= ReadKey; 

END; 
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END; (CASE ChMenul OF...) 

UNTIL ChMenul IN [T-T/EVe']; 

UNTIL ChMenul IN ['E'/e']; 

END; 

END. 
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PANGPLOT.PAS 

( 
file      : PANGPLOT.PAS 

function   : plotting of angular spectra 

author    : W.Maring 

files     : — 

changes    : 05-07-93 

I 

($1 P_ComOpt| 

PROGRAM PAngPlot; 

($IFDEF CPU87) 

f$N+} 

($ELSE) 

($N-) 

($ENDIF1 

USES 

Crt, 

Dos, 

Graph, 

Printer, 

P_AnData, 

P_AngInp, 

P_Graf, 

IO.Check; 

TYPE 

{$IFDEF CPU87) 

Real = Single; 

($ENDIF) 

VAR 

PlotData    : TMessRec; 

XValMax, 

YValMax, 

YFac        : Real; 

Gd, 
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Gm, 

ErrCode     : Integer; 

Ch : Stringp]; 

EnExitProg  : Boolean; 

CONST 

Esc = Char(27); 

{$1 P_AngIn|    {file: P_AngIn.Pas( 

(  

(Main | 

BEGIN 

WITH PlotData, GData DO 

BEGIN 

EnExitProg:= False; 

InitData(PlotData); 

ClrScr; 

Writeln; 

Writeln('P A n g P1 o t'); 

WritelnC '); 

Writeln; 

InputFile('file name: ',DatFil,FileDirec,FileName); 

IF FileName=Esc THEN 

BEGIN 

EnExitProg:= True; 

Exit; 

END; 

StartGraphics(GData); 

WHILE NewFile DO 

BEGIN 

InitData(PlotData); 

Input(PlotData); 

IF EnExitProg THEN Exit; 

GData.PlotType:= 'Histo'; 

PlotLoop(PlotData,GData); 

IF NOT NewFile THEN 

BEGIN 

Close(DatFil); 
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PAUGER.PAS 

file      : PAUGER.PAS 

function   : fast recording of auger spectra 

author    : W.Maring 

files     : PCAM2.PAS, ICLCHECK.PAS 

changes    : 22.10.88 (B.Ungerer) 

09/02/93 (W.Maring) 

($1 P_ComOpt) 

PROGRAM PAuger; 

{$rPDEF CPU87| 

{$N+( 

($ELSE) 

{$N-} 

{$ENDIF) 

($M 8192,0,65360) j Leave memory for child process ) 

USES 

Crt, 

Dos, 

Printer, 

P_AugInp, 

P_AData, 

P_Cam2, 

P_Graf, 

ICLCheck; 

TYPE 

($IFDEF CPU871 

Real = Single; 

(SENDIF) 

VAR 

MessData    : TMessRec; 

LoLim, 
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UpLim, 

SampleSpeed, 

ScanSpeed, 

ScaleRange, 

SigAverageX, 

SigAverageY, 

SignalX, 

SignalY     : Real; 

Ch : String[l]; 

DirListVar   : String[20]; 

ChMenul     : Char; 

EnExitProg  : Boolean; 

CONST 

Esc = Char(27); 

($1 P_AugIn|    ( file: P_AugIn.Pas | 

PROCEDURE Scanlnput 

PROCEDURE Scanlnput; 

VAR 

Chi       : Char; 

InputOkay: Boolean; 

BEGIN 

WITH MessData DO 

BEGIN 

InputOkay:= False; 

WHILE NOT InputOkay DO 

BEGIN 

OutputFile('file name: ',DatFil,FileDirec,FileName); 

IF FileName=Char(27) THEN 

BEGIN 

EnExitProg: = True; 

Exit; 

END; 

ReadReal('Lower Limit: ',-2000,200,LoLim); 

ReadReal('Upper Limit: ',-2000,LoLim,UpLim); 

ReadReal('Scan speed [sec]: ',0,1000,ScanSpeed); 



255 
ReadRealCScale eV/Div: ',0,200,ScaleRange); 

ReadReal('Sample speed [sec]: ',0,1000,SampleSpeed); 

IntNum:= Round(Round(Abs(UpLim-LoLim)/ScanSpeed)/SampleSpeed); 

Readlnt('# of Sample Points: ',0,1000,NumScan); 

ReadStr('Comment: ',Comment); 

Writeln; 

Write('»> Input okay [Y/N]:'); 

REPEAT 

Chl:= ReadKey; 

UNTIL Chi IN [Esc/n'/N'/y'/Y']; 

IF Chl=Esc THEN 

BEGIN 

EnExitProg:= True; 

Exit; 

END; 

Writeln(Chl); 

IF (Chl='y') OR (Chl='Y') THEN 

BEGIN 

InputOkay:= True; 

END; 

Writeln; 

END;' 

IF EnExitProg THEN Exit; 

Writeln; 

Writeln; 

Write('»> Press any key to START and then START on Auger Controler!'); 

ReadStr(",Ch); 

PrintFileHeader(DatFil,FileName); 

Writeln(DatFil,LoLim:5:i; ',UpLim:5:l,' ',ScanSpeed:5:l,' ', 

ScaleRange:5:l,' ',SampleSpeed:8:3,' ',NumScan:4); 

Writeln(DatFil,Comment); 

END; 

END; 

(  

PROCEDURE DataLoop 

PROCEDURE DataLoop; 

VAR 
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NInt, 

NScan : Integer; 

BEGIN 

WITH MessData DO 

BEGIN 

Init_TimSca; 

Writeln; 

Writeln('DataLoop: START'); 

FOR Nlnt:=0 TO IntNum DO 

BEGIN 

IF NotFirstScan THEN 

BEGIN 

Reset_TimSca; 

Start_TimSca(SampleSpeed); 

END; 

SigAverageX:=0.0; 

SigAverageY:=0.0; 

FOR NScan:=l TO NumScan DO 

BEGIN 

Get_ADC2(adc_c2,SignalX); 

SigAverageX:= SigAverageX + SignalX; 

Get_ADCl(adc_cl,SignalY); 

SigAverageY:= SigAverageY + SignalY; 

END; {FORNScan=...) 

SignalX:=SigAverageX/(1.0*NumScan); 

XVal[NInt]:= SignalX; 

SignalY:= SigAverageY / (1. 0*NumScan); 

YVal[NInt]:= SignalY; 

ActPlotData[NInt]:= YVal[NInt]; 

I 
Writeln('NInt= ',NInt:4,' X= ',XVal[NInt]:10:2, 

' Y= ',YVal[NInt]:10:2); 

I 
NotFirstScan:= True; 

END; (FOR NInt...) 

Writeln('DataLoop: STOP'); 

END; 

END; 
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PROCEDURE WriteData 

PROCEDURE WriteData; 

VAR 

NInt    : Integer; 

BEGIN 

WITH MessData DO 

BEGIN 

Writeln(DatFiUntNum); 

FOR Nlnt:=0 TO IntNum DO 

BEGIN 

Writeln(DatFil,XVal[NInt]:10:4/   ',YVal[NInt]:10:4); 

END; 

Close(DatFil); 

END; 

END; 

PROCEDURE MainLoop 

PROCEDURE MainLoop; 

VAR 

Chi    : Char; 

BEGIN 

WITH MessData, GData DO 

BEGIN 

EnExitProg:= False; 

ClrScr; 

(***   Init_Crate;( 

WHILE NOT EndTrue DO 

BEGIN 

InitData(MessData); 

Scanlnput; 

IF EnExitProg THEN 

BEGIN 

IF NOT (FileName=Esc) THEN 

BEGIN 
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Close(DatFil); 

Writeln; 

Writeln; 

Write('»> empty ',FileName,' will be deleted [Y/N]:'); 

REPEAT 

Chl:= ReadKey; 

UNTIL Chi IN ['n'/N'/y'/Y']; 

Writeln(Chl); 

IF (Chl='y') OR (Chl='Y') THEN 

BEGIN 

Erase(DatFil);   (file will be deleted if existing by Exit! ( 

END; 

Writeln; 

END; 

Exit; 

END; 

DataLoop; 

WriteData; 

StartGraphics(GData); 

GData.PlotType:= 'Point'; 

PlotLoop(MessData,GData); 

WHILE NewFile DO 

BEGIN 

Input(MessData); 

PlotLoop(MessData,GData); 

END; 

StopGraphics(GData); 

EndTrue:= True; 

END; 

END; 

END; 

BEGIN {Main ] 

WITH MessData, GData DO 

BEGIN 

InitData(MessData); 

REPEAT 

ClrScr; 
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Writeln; 

Writeln('P Auger'); 

WritelnO '); 

Writeln; 

Writelnf  1 -> record auger spectra'); 

WritelnC   2 —> plot auger spectra'); 

WritelnO  3 —> c:\sputter\augdat listing'); 

Writeln; 

WritelnC   E -> End'); 

Writeln; 

Write('»> Enter menu number:'); 

REPEAT 

ChMenul:= ReadKey; 

UNTIL ChMenul IN [Esc,T..'3'/e'/E']; 

IF ChMenul=Esc THEN Exit; 

Writeln(ChMenul); 

REPEAT 

CASE ChMenul OF 

'1': BEGIN 

EndTrue:= False; 

MainLoop; 

END; 

'2': BEGIN 

SwapVectors; 

Exec(GetEnv('COMSPEC'),7C'+ExeDirec+'paugplot.exe'); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 

END; 

'3': BEGIN 

Writeln; 

ReadStr('DirListVar:',DirListVar); 

SwapVectors; 

Exec(GetEnv('COMSPEC'),7C+'dir/w/p'+FileDirec+DirListVar); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: \DosError); 

END; 
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Writeln; 

Write('»> Press any key to continue!'); 

Ch:= ReadKey; 

END; 

END; {CASE ChMenul OF...} 

UNTIL ChMenul IN [T..'3yE'/e']; 

UNTIL ChMenul IN ['E'/e']; 

END; 

END. 
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PAUGPLOT.PAS 

file      : PAUGPLOT.PAS 

function  : plotting of mass spectra 

author    : W.Maring 

files     : — 

changes    : 09/02/93 

j$DEFINE Augspec) 

PROGRAM PAugPlot; 

{$IFDEF CPU87} 

l$N+) 

($ELSE) 

i$N-} 

($ENDIF) 

USES 

Crt, 

Dos, 

Graph, 

Printer, 

P_AData, 

P_AugInp, 

P_Graf, 

IO_Check; 

TYPE 

($IFDEF CPU87} 

Real = Single; 

{$ENDIFj 

VAR 

PlotData    : TMessRec; 

XValMax, 

YValMax, 

YFac        : Real; 

Gd, 



262 
Gm, 

ErrCode      : Integer; 

Ch : String[2]; 

EnExitProg  : Boolean; 

CONST 

Esc = Chr(27); 

{$1 P_AugIn)    {file: P_AugIn.Pas ) 

(  

[ Main ( 

BEGIN 

WITH PIotData, GData DO 

BEGIN 

EnExitProg:= False; 

InitData(PlotData); 

ClrScr; 

Writeln; 

Writeln('P A u g P1 o t'); 

WritelnC '); 

Writeln; 

InputFile('file name: ',DatFil,FileDirec,FileName); 

IF FileName=Esc THEN 

BEGIN 

EnExitProg:= True; 

Exit; 

END; 

StartGraphics(GData); 

WHILE NewFile DO 

BEGIN 

InitData(PlotData); 

Input(PlotData); 

IF EnExitProg THEN Exit; 

GData.PlotType:= 'Point'; 

PlotLoop(PlotData,GData); 

IF NOT NewFile THEN 

BEGIN 

Close(DatFil); 
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END; 

END; 

StopGraphics(GData); 

END; 

END. 
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PCAMINIT.PAS 

I 

file      : PCAMINIT.PAS 

function  : initilization of CAMAC crate 

author    : W.Maring 

files     : P_Cam2.PAS, 

IOJZheck.PAS 

changes    : 06-04-93 

) 

PROGRAM PCamlnit; 

{$IFDEF CPU87) 

($N+1 

($ELSE} 

f$N-| 

($ENDIFj 

USES 

Crt, 

Dos, 

Printer, 

P_Cam2, 

IO_Check; 

VAR 

Chi    : Char; 

TYPE 

($IFDEF CPU87) 

Real = Single; 

j$ENDIF} 

BEGIN 

Write('»> Reset and init CAMAC crate [Y/N]:'); 

REPEAT 

Chl:= ReadKey; 

UNTIL Chi IN [Esc/n'/N'/yVY]; 

IF Chl=Esc THEN Exit; 



265 
Writeln(Chl); 

IF (Chl='y') OR (Chl=T) THEN 

BEGIN 

Init_Crate; 

END; 

END. 
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PFR SCAN.PAS 

file      : PFR_SCAN.PAS 

function   : recording of frequency spectra 

author    : B.Ungerer (MPI Goe), W.Maring 

files     : P_FData, 

IO.Check.PAS 

changes    : 22.10.88 (BU) 

09/02/93 (WM) 

($DEFINE FreqSpec) 

PROGRAM PFr_Scan; 

{$IFDEF CPU87) 

($N+) 

($ELSE) 

($N-| 

($ENDIF) 

j$M 8192,0,65360) ( Leave memory for child process ] 

USES 

Crt,      . 

Dos, 

Printer, 

P_FData, 

P_Cam2, 

P_Graf, 

IO.Check; 

TYPE 

{$IFDEF CPU87( 

Real = Single; 

{$ENDIF) 

VAR 

MessData    : TMessRec; 

DirListVar  : String[20]; 
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Ch : String[l]; 

CurDir, 

SavDir      : String; 

ChMenul      : Char; 

EnExitProg  : Boolean; 

CONST 

Esc = Char(27); 

($1 P_FreqIn|    (file: P_FreqIn.Pas) 

[ Main 1 

BEGIN 

WITH MessData, GData DO 

BEGIN 

InitData(MessData); 

REPEAT 

ClrScr; 

Writeln; 

Writeln('P F r _ S c a n'); 

WritelnC '); 

Writeln; 

WritelnC   1 —> record frequency spectra'); 

WritelnC  2 —> plot frequency spectra'); 

WritelnC   3 —> c:\sputter\freqdatlisting'); 

Writeln; 

WritelnC   E -> End'); 

Writeln; 

Write('»> Enter menu number:'); 

REPEAT 

ChMenul:= ReadKey; 

UNTIL ChMenul IN [Esc,T..'3'/e'/E']; 

IF ChMenul =Esc THEN Exit; 

Writeln(ChMenul); 

REPEAT 

CASE ChMenul OF 

T: BEGIN 

GetDir(0,CurDir); 
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SavDir:= CurDir; 

{$1-1 

ChDir('c: \basicdir\new'); 

IF IOResultoO THEN 

BEGIN 

WriteIn('Cannot find c:\basicdir\new'); 

END; 

($I+| 

SwapVectors; 

Exec(GetEnv('COMSPEC),yC '+ 

'c:\basicdir\new\hbasic freqscan.bas'); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 

ChDir(SavDir); 

END; 

'2': BEGIN 

SwapVectors; 

Exec(GetEnv('COMSPEC')//C'+ExeDirec+'pfreplot.exe'); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 

END; 

'3': BEGIN 

Writeln; 

ReadStr('DirListVar: ',DirListVar); 

SwapVectors; 

Exec(GetEnv('COMSPEC');/C '+'dir/w/p '+FiIeDirec+DirListVar); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 

Writeln; 

Write('»> Press any key to continue!'); 

Ch:= ReadKey; 

END; 
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END; (CASE ChMenul OF...) 

UNTIL ChMenul IN [T..'3yE','e']; 

UNTIL ChMenul IN ['E'/e']; 

END; 

END. 
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PFREPLOT.PAS 

file      : PFREPLOT.PAS 

function   : plotting of angular spectra 

author    : W.Maring 

files     : — 

changes    : 05-07-93 

{$1 P_ComOptj 

PROGRAM PFrePlot; 

($D?DEF CPU87} 

l$N+} 

($ELSE) 

($N-1 

)$ENDIF)   . 

USES 

Crt, 

Dos, 

Graph, 

Printer, 

P_FData, 

P_FInput, 

P_Graf, 

IO_Check; 

TYPE 

($IFDEF CPU87) 

Real = Single; 

($ENDIF1 

VAR 

PlotData    : TMessRec; 

XValMax, 

YValMax, 

YFac        : Real; 

Gd, 
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Gm, 

ErrCode     : Integer; 

Ch : String[2]; 

EnExitProg  : Boolean; 

CONST 

Esc = Char(27); 

($1 P_FreqIn|    (file: P_FreqIn.Pas( 

(Main) 

BEGIN 

WITH PlotData, GData DO 

BEGIN 

EnExitProg:= False; 

ClrScr; 

InitData(PlotData); 

Writeln; 

Writeln('P F r e P1 o t'); 

WritelnC '); 

Writeln; 

InputFile('file name: ',DatFil,FüeDirec,FileName); 

StartGraphics(GData); 

WHILE NewFile DO 

BEGIN 

InitData(PlotData); 

Input(PlotData); 

IF EnExitProg THEN Exit; 

GData.PlotType:= 'Histo'; 

PlotLoop(PlotData,GData); 

IF NOT NewFile THEN 

BEGIN 

Close(DatFil); 

END; 

END; 

StopGraphics(GData); 

END; 
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END. 
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PMASPLOT.PAS 

file      : PMASPLOT.PAS 

function   : plotting of mass spectra 

author    : W.Maring 

files     : - 

changes    : 09/02/93 

($1 P_ComOpt| 

PROGRAM PMasPlot; 

f$IFDEF CPU87) 

{$N+! 

{$ELSE| 

{$N-( 

{$ENDIF( . 

USES 

Crt, 

Dos, 

Graph, 

Printer, 

P_MData, 

P_MInput, 

P_Graf, 

IO_Check; 

TYPE 

{$IFDEF CPU87) 

Real = Single; 

{$ENDIF) 

VAR 

PlotData    : TMessRec; 

XValMax, 

YValMax, 

YFac        : Real; 

Gd, 
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Gm, 

ErrCode     : Integer; 

Ch : String[2]; 

EnExitProg  : Boolean; 

CONST 

Esc = Char(27); 

($1 P_MasIn)    (file: P_MasIn.Pas) 

(Main) 

BEGIN 

WITH PlotData, GData DO 

BEGIN 

EnExitProg:= False; 

InitData(PlotData); 

ClrScr; 

Writeln; 

Writeln('P M a s P1 o t'); 

WritelnC '); 

Writeln; 

InputFile('file name: ^DatFiLFileDirec^FileName); 

IF FileName=Esc THEN 

BEGIN 

EnExitProg:= True; 

Exit; 

END; 

StartGraphics(GData); 

WHILE NewFile DO 

BEGIN 

InitData(PlotData); 

Input(PlotData); 

IF EnExitProg THEN Exit; 

GData.PlotType:= 'Histo'; 

PlotLoop(PlotData,GData); 

IF NOT NewFile THEN 

BEGIN 

Close(DatFil); 
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END; 

END; 

StopGraphics(GData); 

END; 

END. 
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PMASS.PAS 

file      : PMASS.PAS 

function   : fast recording of mass spectra 

author    : B.Ungerer (MPI Goe), W.Maring 

files     : P_Cam2.PAS, 

P_Graf, 

P_MData, 

ICLCheck.PAS 

changes    : 22.10.88 (BU) 

09/02/93 (WM) 

{SDEFINE Masspec) 

PROGRAM PMass; 

{$IPDEF CPU87| 

{$N+} 

i$ELSE| 

($N-) 

($ENDIF) 

($M 8192,0,65360) ( Leave memory for child process ) 

USES 

Crt, 

Dos, 

Printer, 

P_MInput, 

P_MData, 

P_Cam2, 

P_Graf, 

IO_Check; 

TYPE 

($IFDEF CPU87) 

Real = Single; 

($ENDIF| 
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VAR 

MessData    : TMessRec; 

DirListVar  : String[20]; 

Ch : String[l]; 

ChMenul      : Char; 

EnExitProg  : Boolean; 

CONST 

UMassFac    : Real = 0.033333;    ( Voltage/mass conversion ) 

MassCorr    : Real = 1.0;        ( Correction for mass value ) 

Esc = Char(27); 

($1 P_MasIn)    (file: P_MasIn.Pas} 

I- 
PROCEDURE Scanlnput 

PROCEDURE Scanlnput; 

VAR 

Chi       : Char; 

InputOkay: Boolean; 

BEGIN 

WITH MessData DO 

BEGIN 

InputOkay:= False; 

WHILE NOT InputOkay DO 

BEGIN 

OutputFile('file name: ',DatFil,FileDirec,FileName); 

IF FileName=Esc THEN 

BEGIN 

EnExitProg: = True; 

Exit; 

END; 

ReadReal('LowMass:',0,300,LowMass); 

ReadReal('HighMass: ',LowMass,300,HighMass); 

DifMass:= HighMass-LowMass; 

Readlnt('# of Intervals: ',0,1000,IntNum); 

DelMass:= DifMass/(1.0*IntNum); 

Readlnt('# of Scans per Mass: ',0,1000,NumScan); 
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Readlnt('range 10A-x: ',5,12,IntRange); 

ReadStr('Comment: ',Comment); 

Writeln; 

Write('»> Input okay [Y/N]:'); 

REPEAT 

Chl:= ReadKey; 

UNTIL Chi IN [Esc/n'/N'/y'/Y]; 

IF Chl=Esc THEN 

BEGIN 

EnExitProg:= True; 

Exit; 

END; 

Writeln(Chl); 

IF (Chl='y') OR (Chl=Y') THEN 

BEGIN 

InputOkay:= True; 

END; 

Writeln; 

END; 

IF EnExitProg THEN Exit; 

Writeln; 

Writeln; 

Write('»> Press any key to START!'); 

ReadStr(",Ch); 

PrintFileHeader(DatFil/FileName); 

Writeln(DatFil,LowMass:5:l,' ',HighMass:5:l,' ',NumScan:4,'', 

10A-',IntRange:2); 

Writeln(DatFil,Comment); 

Writeln(DatFiLIntNum); 

END; 

END; 

PROCEDURE DataLoop 

PROCEDURE DataLoop; 

BEGIN 

WITH MessData DO 

BEGIN 
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Writeln; 

Writeln('DataLoop: START'); 

FOR Nlnt:=0 TO IntNum DO 

BEGIN 

Mass:= LowMass+NInt*DelMass; 

XVal[NInt]:= Mass; 

URamp:= (Mass-MassCorr)*UMassFac; 

Set_DACl(dac_c3,URamp);     (** Set_DACl **} 

SigAverage:= 0.0; 

FOR NScan:=l TO NumScan DO 

BEGIN 

Get_ADC2(adc_c2,Signal); 

SigAverage:= SigAverage + Signal; 

Signal: = SigAverage / (1.0*NumScan); 

YVal[NInt]:= Signal; 

ActPlotData[NInt]:= YVal[NInt]; 

END; (FORNScan=...( 

END;     (FOR NInt= ...} 

Writeln('DataLoop: STOP'); 

END; 

END; 

PROCEDURE WriteData 

PROCEDURE WriteData; 

BEGIN 

WITH MessData DO 

BEGIN 

FOR Nlnt:=0 TO IntNum DO 

BEGIN 

Writeln(DatFil,XVal[NInt]:10:4,'   ',YVal[NInt]); 

END; 

Close(DatFil); 

END; 

END; 

PROCEDURE MainLoop 
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PROCEDURE MainLoop; 

VAR 

Chi   :Char; 

BEGIN 

WITH MessData, GData DO 

BEGIN 

EnExitProg:= False; 

ClrScr; 

{***   Init_Crate;( 

WHILE NOT EndTrue DO 

BEGIN 

InitData(MessData); 

Scanlnput; 

IF EnExitProg THEN 

BEGIN 

IF NOT (FileName=Esc) THEN 

BEGIN 

Close(DatFil); 

Writeln; 

Writeln; 

Write('»> empty ',FiIeName,' will be deleted [Y/N]:'); 

REPEAT 

Chl:= ReadKey; 

UNTIL Chi IN ['n'/N'/y'/Y']; 

Writeln(Chl); 

IF (Chl=y) OR (Chl=T) THEN 

BEGIN 

Erase(DatFil);   ( file will be deleted if existing by Exit! ] 

END; 

Writeln; 

END; 

Exit; 

END; 

DataLoop; 

WriteData; 

StartGraphics(GData); 

GData.PlotType:= 'Histo'; 

PlotLoop(MessData,GData); 

WHILE NewFile DO 
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BEGIN 

Input(MessData); 

PlotLoop(MessData,GData); 

END; 

StopGraphics(GData); 

EndTrue:= True; 

END; 

END; 

END; 

(Main) 

BEGIN 

WITH MessData, GData DO 

BEGIN 

InitData(MessData); 

REPEAT 

ClrScr; 

Writeln; 

Writeln('P Mass'); 

WritelnC '), 

Writeln; 

WritelnC   1 —> record mass spectra'); 

WritelnC   2 --> plot mass spectra'); 

WritelnC  3 --> c:\sputter\masdat listing'); 

Writeln; 

WritelnC   E ->End'); 

Writeln; 

Write('»> Enter menu number :'); 

REPEAT 

ChMenul:= ReadKey; 

UNTIL ChMenul IN [Esc,T..'3ye','E']; 

IF ChMenul=Esc THEN Exit; 

Writeln(ChMenul); 

REPEAT 

CASE ChMenul OF 

1': BEGIN 

EndTrue:= False; 

MainLoop; 
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END; 

'2': BEGIN 

SwapVectors; 

Exec(GetEnv(,COMSPEC'),,/C'+ExeDirec+'pmasplot.exe'); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 

END; 

■3': BEGIN 

Writeln; 

ReadStr('DirListVar:',DirListVar); 

SwapVectors; 

Exec(GetEnv('COMSPEC')//C '+'dir/w/p '+FileDirec+DirListVar); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 

Writeln; 

Write('»> Press any key to continue!'); 

Ch:= ReadKey; 

END; 

END; (CASE ChMenul OF...) 

UNTIL ChMenul IN [T..'3'/E7e']; 

UNTIL ChMenul IN [E'/e']; 

END; 

END. 
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PMESPROG.PAS 

file      : PMESPROG.PAS 

function  : recording mass, auger, angular or frequency spectra 

author    : W.Maring 

files     : PAn_Scan.EXE, 

PAngPlot.EXE, 

PAuger.EXE, 

PAugPlot.EXE, 

PFr_Scan.EXE, 

PFrePlot.EXE, 

PMass.EXE, 

PMasPlot.EXE 

PCamInit.EXE 

changes    : 21/04/93 (WM) 

PROGRAM PMesProg; 

($M 8192,0,65360) j Leave memory for child process ] 

USES 

Crt, 

Dos, 

Printer, 

IO.Check; 

TYPE 

TDatRec = RECORD 

BasicProgFileName, 

DirListVar : String[20]; 

CurDir, 

SavDir, 

ExeDir, 

BasicDir : String; 

DriveCh : Byte; 

ChMenul, 

Ch : Char; 

ExecBasicProg      : Boolean; 
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END; 

VAR 

BasicDirX : String; 

Data : TDatRec 

{$1 P_MesIn)     {file: PMesIn.Pas} 

{Main) 

BEGIN 

WITH DATA DO 

BEGIN 

InitData(Data); 

REPEAT 

ClrScr; 

Writeln; 

WriteIn('PMesPro g'); 

WritelnC '); 

Writeln; 

WritelnC   1 —> AUGER:      pauger.exe'); 

WritelnC  2 -> MASS:       pmass.exe'); 

WritelnC   3 ->FREQ:       pfr_scan.exe');- 

Writeln('   4 — > ANGULAR:    pan_scan.exe'); 

WritelnC  5 -> DAC:        dac_test.exe'); 

WritelnC   6 -> BASIC:      run BASIC programs'); 

WritelnC   7 -> DOS:        dir/w/p'); 

WritelnC  8 —> init CAMAC: pcaminit.exe'); 

Writeln; 

WritelnC  E -> End'); 

Writeln; 

Write('»> Enter menu number:'); 

REPEAT 

ChMenul:= ReadKey; 

UNTIL ChMenul IN [T..'8','eyE']; 

Writeln(ChMenul); 

REPEAT 

CASE ChMenul OF 

1': BEGIN 

SwapVectors; 

Exec(GetEnv(,COMSPEC),7C'+ExeDir+'pauger.exe'); 
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SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 

END; 

7': BEGIN 

SwapVectors; 

Exec(GetEnv('COMSPEC'),'/C '+ExeDir+'pmass.exe'); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 

END; 

'3': BEGIN 

SwapVectors; 

Exec(GetEnv('COMSPEC,)//C'+ExeDir+'pfr_scan.exe'); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 

END; 

'4': BEGIN 

SwapVectors; 

Exec(GetEnv('COMSPEC)//C '+ExeDir+'pan_scan.exe'); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 

END; 

'5': BEGIN 

SwapVectors; 

Exec(GetEnv('COMSPEC'),'/C'+ExeDir+'dac_test.exe'); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 
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END; 

'6': BEGIN 

ExecBasicProg:= True; 

ClrScr; 

GetDir(0/CurDir); 

SavDir:= CurDir; 

($M 
BasicDirX:=Copy(BasicDir/l,(Length(BasicDir)-l)); 

ChDir(BasicDirX); 

IF IOResultoO THEN 

BEGIN 

Writeln('Cannot find ',BasicDirX); 

Writeln; 

Write('»> Press any key to continue!'); 

Ch:= ReadKey; 

ChDir(SavDir); 

Exit; 

END; 

($1+) 

Writeln; 

Writeln('ccount.bas   : counting of the photomultiplier signal'); 

Writeln('detpos.pas   : new detector position'); 

Writeln('shutter.bas : test of the laser beam shutter'); 

Writeln; 

Writeln; 

Write('BASIC program:'); 

InpChar(BasicProgFileName); 

IF BasicProgFileName=Char(27) THEN 

BEGIN 

ExecBasicProg:= False; 

END; 

IF ExecBasicProg THEN 

BEGIN 

SwapVectors; 

Exec(GetEnv('COMSPEC')//C '+BasicDir+'hbasic' 

+BasicProgFileName); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 
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END; 

ChDir(SavDir); 

END; 

T: BEGIN 

Writeln; 

GetDir(0,CurDir); 

Writeln('CurDir: ',CurDir); 

Writeln; 

ReadStr('[NewDir\]DirListVar:',DirListVar); 

SwapVectors; 

Exec(GetEnv('COMSPEC);/C '+'dir/w/p '+DirListVar); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 

Writeln; 

Write('»> Press any key to continue!'); 

Ch:= ReadKey; 

END; 

'8': BEGIN 

SwapVectors; 

Exec(GetEnv(,COMSPEC'),7C'+ExeDir+'pcaminit.exe'); 

SwapVectors; 

IF DosError <> 0 THEN 

BEGIN 

Writeln('DOSError: ',DosError); 

END; 

END; 

END; (CASE ChMenul OF...) 

UNTIL ChMenul IN [T^'/EVe']; 

UNTIL ChMenul IN ['E'/e']; 

END; 

END. 



VITA 

Paul Robert Schomber was born in Texarkana, Arkansas on May 11,1961. 

He received his B.S. degree in Chemistry from Oklahoma State University in 

1983 and was commissioned in the United States Air Force the same year. 

The Air Force selected him for advanced graduate training in 1986 and he 

received his M.S. degree in Chemistry from the University of Washington in 

1988. He was again selected by the Air Force for additional graduate training 

in 1991. He returned to the University of Washington in September 1991 and 

was awarded a Ph.D. in Physical Chemistry in March 1995. 


